ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что в дереве есть вершина, из которой выходит ровно одно ребро (такая вершина называется висячей). n бумажных кругов радиуса 1 уложены на плоскость таким образом, что их границы проходят через одну точку, причём эта точка находится внутри области, покрытой кругами. Эта область представляет собой многоугольник с криволинейными сторонами. Найдите его периметр. В остроугольном треугольнике $ABC$ проведены высоты $AH_1, BH_2, CH_3$, которые пересекаются в ортоцентре $H$. Точки $P$ и $Q$ симметричны $H_2$ и $H_3$ относительно $H$. Описанная окружность треугольника $PH_1Q$ пересекает во второй раз высоты $BH_2$ и $CH_3$ в точках $R$ и $S$. Докажите, что $RS$ – средняя линия треугольника $ABC$. Среди актеров театра Карабаса Барабаса прошёл шахматный турнир. Каждый участник сыграл с каждым из остальных ровно один раз. За победу давали один сольдо, за ничью – полсольдо, за поражение не давалось ничего. Оказалось, что среди каждых трёх участников найдётся шахматист, заработавший в партиях с двумя другими ровно 1,5 сольдо. Какое наибольшее количество актеров могло участвовать в таком турнире? Фигура «скрипач» бьёт клетку слева по стороне (локтем) и справа вверху по диагонали (смычком), если он правша, и, наоборот, правую клетку по стороне и левую верхнюю по диагонали, если левша (все скрипачи сидят лицом к нам). Посадите как можно больше «скрипачей» в «оркестр» 8×8 клеток, чтобы они не били друг друга. (Вы можете использовать любое количество как правшей, так и левшей.) На плоскости даны две неконцентрические
окружности S1 и S2. Докажите, что геометрическим местом точек,
для которых степень относительно S1 равна степени
относительно S2, является прямая.
Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.
Существует ли на плоскости конечный набор различных векторов
На продолжениях сторон DA, AB, BC, CD выпуклого
четырехугольника ABCD взяты точки
A1, B1, C1, D1 так,
что
В классе учится меньше 50 школьников. За контрольную работу седьмая часть учеников получила пятёрки, третья – четвёрки, половина – тройки. Остальные работы были оценены как неудовлетворительные. Сколько было таких работ? Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°. Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.
Во вписанном четырёхугольнике ABCD известны углы: ∠DAB = α, ∠ABC = β, ∠BKC = γ, где K – точка пересечения диагоналей. Найдите угол ACD.
Даны две окружности, пересекающиеся в точках $A$, $B$, и точка $O$, лежащая вне их. Циркулем и линейкой постройте такой луч с началом $O$, пересекающий первую окружность в точке $C$, а вторую – в точке $D$, чтобы отношение $OC:OD$ было максимальным. |
Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 329]
Докажите, что если существует цепочка окружностей S1, S2,..., Sn, каждая из которых касается двух соседних (Sn касается Sn - 1 и S1) и двух данных непересекающихся окружностей R1 и R2, то таких цепочек бесконечно много. А именно, для любой окружности T1, касающейся R1 и R2 (одинаковым образом, если R1 и R2 не лежат одна в другой, внешним и внутренним образом в противном случае), существует аналогичная цепочка из n касающихся окружностей T1, T2,..., Tn (поризм Штейнера).
Докажите, что для двух непересекающихся окружностей R1 и R2
цепочка из n касающихся окружностей (см. предыдущую задачу)
существует тогда и только тогда, когда угол между окружностями T1
и T2, касающимися R1 и R2 в точках их пересечения с прямой,
соединяющей центры, равен целому кратному угла
360o/n (рис.).
Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что
С помощью циркуля и линейки постройте окружность данного радиуса, касающуюся двух данных окружностей.
Даны две окружности, пересекающиеся в точках $A$, $B$, и точка $O$, лежащая вне их. Циркулем и линейкой постройте такой луч с началом $O$, пересекающий первую окружность в точке $C$, а вторую – в точке $D$, чтобы отношение $OC:OD$ было максимальным.
Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 329]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке