ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Дан
В равнобедренном треугольнике ABC (AB = BC) проведена высота CD . Угол BAC равен α . Радиус окружности, проходящей через точки A , C и D , равен R . Найдите площадь треугольника ABC . Пусть BH – высота прямоугольного треугольника ABC (∠B=90∘). Вневписанная окружность треугольника ABH, противолежащая вершине B, касается прямой AB в точке A1; аналогично определяется точка C1. Докажите, что AC∥A1C1. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 139]
Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.
Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.
В треугольнике ABC вневписанная окружность, лежащая напротив угла C, касается стороны AB в точке T. Пусть J – центр вневписанной окружности, лежащей напротив угла A, a M – середина AJ. Докажите, что MT=MC.
Пусть BH – высота прямоугольного треугольника ABC (∠B=90∘). Вневписанная окружность треугольника ABH, противолежащая вершине B, касается прямой AB в точке A1; аналогично определяется точка C1. Докажите, что AC∥A1C1.
Дан
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 139]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке