ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сформулируйте и докажите признаки делимости на 2n и 5n. В треугольнике ABC даны углы B и C. Биссектриса
угла A пересекает сторону BC в точке D, а описанную окружность треугольника ABC – в точке E. Можно ли невыпуклый четырехугольник разрезать двумя прямыми на 6
частей?
Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с
положительными разностями d1, d2, d3, ... . Может ли случиться, что при этом сумма
1/d1 + 1/d2 + ... + 1/dk не превышает 0,9? Рассмотрите случаи:
Середина одной из диагоналей выпуклого четырёхугольника соединена с концами другой диагонали. Докажите, что полученная ломаная делит четырёхугольник на две равновеликие части.
Известно, что cos α° = 1/3. Является ли α рациональным числом? В некоторой стране 100 аэродромов, причём все попарные расстояния между ними различны. С каждого аэродрома поднимается самолет и летит на ближайший к нему аэродром. а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число). б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа. Какое наименьшее количество различных целых чисел нужно взять, чтобы среди них можно было выбрать как геометрическую, так и арифметическую прогрессию длины 5? |
Страница: << 143 144 145 146 147 148 149 >> [Всего задач: 1325]
Казино предлагает игру по таким правилам. Игрок ставит любое целое число долларов (но не больше, чем у него в этот момент есть) либо на орла, либо на решку. Затем подбрасывается монета. Если игрок угадал, как она упадёт, он получает назад свою ставку и столько же денег впридачу. Если не угадал — его ставку забирает казино. Если игроку не повезёт четыре раза подряд, казино присуждает ему в следующей игре утешительную победу вне зависимости от того, как упадёт монета. Джо пришёл в казино со 100 долларами. Он обязался сделать ровно пять ставок и ни разу не ставить больше 17 долларов. Какую наибольшую сумму денег он сможет гарантированно унести из казино после такой игры?
У Пети есть 8 монет, про которые он знает только, что 7 из них настоящие и весят одинаково, а одна фальшивая и отличается от настоящей по весу, неизвестно в какую сторону. У Васи есть чашечные весы – они показывают, какая чашка тяжелее, но не показывают, насколько. За каждое взвешивание Петя платит Васе (до взвешивания) одну монету из имеющихся у него. Если уплачена настоящая монета, Вася сообщит Пете верный результат взвешивания, а если фальшивая, то случайный. Петя хочет определить 5 настоящих монет и не отдать ни одну из этих монет Васе. Может ли Петя гарантированно этого добиться?
Доска 2N×2N покрыта неперекрывающимися доминошками 1×2. По доске прошла хромая ладья, побывав на каждой клетке по одному разу (каждый ход хромой ладьи – на клетку, соседнюю по стороне). Назовём ход продольным, если это переход из одной клетки доминошки на другую клетку той же доминошки. Каково а) наибольшее; б) наименьшее возможное число продольных ходов?
В клетчатом квадрате между каждыми двумя соседними по стороне клетками есть закрытая дверь. Жук начинает с какой-то клетки и ходит по клеткам, проходя через двери. Закрытую дверь он открывает в ту сторону, в которую идёт, и оставляет дверь открытой. Через открытую дверь жук может пройти только в ту сторону, в которую дверь была открыта. Докажите, что если жук в какой-либо момент захочет вернуться в исходную клетку, то он сможет это сделать.
Кащей заточил в темницу толпу пленников и сказал им: «Завтра вам предстоит испытание. Я выберу нескольких из вас (кого захочу, но минимум троих), посажу за круглый стол в каком-то порядке (в каком пожелаю) и каждому на лоб наклею бумажку с нарисованной на ней фигуркой. Фигурки могут повторяться, но никакие две разные фигурки не будут наклеены на одинаковое число людей. Каждый посмотрит на фигурки остальных, а своей не увидит. Подавать друг другу какие-то знаки запрещено. После этого я наклейки сниму и велю всех развести по отдельным камерам. Там каждый должен будет на листе бумаги нарисовать фигурку. Если хоть один нарисует такую, какая была у него на лбу, всех отпущу. Иначе останетесь здесь навечно». Как пленникам договориться действовать, чтобы спастись?
Страница: << 143 144 145 146 147 148 149 >> [Всего задач: 1325]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке