ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга. |
Страница: << 36 37 38 39 40 41 42 [Всего задач: 210]
В квадрате ABCD точки K и M принадлежат сторонам BC и CD соответственно, причём AM – биссектриса угла KAD.
Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные
n-угольники. Обозначим их периметры через Pn (для описанного) и pn (для вписанного).
Дан треугольник ABC, AA1, BB1 и CC1 – его биссектрисы. Известно, что величины углов A, B и C относятся как 4 : 2 : 1. Докажите, что A1B1 = A1C1.
B выпуклом четырёхугольнике ABCD: AC ⊥ BD, ∠BCA = 10°, ∠BDA = 20°, ∠BAC = 40°. Найдите ∠BDC.
а) На плоскости лежит правильный восьмиугольник. Его разрешено "перекатывать" по плоскости, переворачивая (симметрично отражая) относительно любой стороны. Докажите, что для любого круга можно перекатить восьмиугольник в такое положение, что его центр окажется внутри круга.
Страница: << 36 37 38 39 40 41 42 [Всего задач: 210] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|