Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 158]
|
|
Сложность: 5 Классы: 8,9,10
|
На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых
клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.
|
|
Сложность: 5 Классы: 8,9,10,11
|
На прямой через равные промежутки отмечены 1996 точек. Петя
раскрашивает половину из них в красный цвет, а остальные – в синий. Затем
Вася разбивает их на пары красная-синяя так, чтобы сумма расстояний
между точками в парах была максимальной. Докажите, что этот максимум не
зависит от того, какую раскраску сделал Петя.
|
|
Сложность: 5 Классы: 9,10,11
|
Каждая клетка клетчатой плоскости раскрашена в один из
n² цветов так, что в каждом квадрате из
n× клеток встречаются все цвета.
Известно, что в какой-то строке встречаются все цвета. Докажите, что существует столбец, раскрашенный ровно в
n цветов.
|
|
Сложность: 5+ Классы: 9,10,11
|
|
а) На рис. 1 плоскость покрыта квадратами пяти цветов. Центры квадратов одного и того же цвета расположены в вершинах сетки из одинаковых квадратов. При каком числе n цветов возможно аналогичное заполнение плоскости?
б) На рис. 2 плоскость покрыта шестиугольниками семи цветов так, что центры шестиугольников одного и того же цвета образуют вершины решётки из одинаковых правильных треугольников. При каком числе n цветов возможно аналогичное построение?
Примечание. Имеются в виду только такие заполнения плоскости фигурками (квадратами или шестиугольниками), при котором сетка, соответствующая какому-то одному цвету, имеет такие же размеры и направления сторон квадратов (или треугольников), как и сетка, соответствующая любому другому цвету (то есть все сетки должны получаться друг из друга параллельным сдвигом). |
|
|
|
Сложность: 7- Классы: 8,9,10
|
Окружность разбита точками
A1,
A2,...,
An на
n равных дуг, каждая из которых окрашена в какой-то цвет. Две дуги окружности (с концами в точках разбиения) называем одинаково окрашенными, если при некотором повороте окружности одна из них полностью, включая цвета всех дуг, совпадает с другой. (Например, на рисунке дуги
A2A6 и
A6A10 одинаково окрашены.)
Докажите, что если для каждой точки разбиения Ak можно указать две непересекающиеся одинаково окрашенные дуги с общим концом Ak, то всю окружность можно разбить на несколько одинаково окрашенных дуг, то есть окраска периодическая. Рассмотрите сначала случай, когда красок всего две, скажем красная и чёрная.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 158]