Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Докажите, что  ½ (x² + y²) ≥ xy  при любых x и y.

Вниз   Решение


Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

ВверхВниз   Решение


В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

ВверхВниз   Решение


Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник правильный.

ВверхВниз   Решение


Из точки, данной на окружности, проведены диаметр и хорда, равная радиусу. Найдите угол между ними.

ВверхВниз   Решение


Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

ВверхВниз   Решение


Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же.
  а) Какова вероятность того, что они встретятся?
  б) Как изменится вероятность встречи, если Женя решит прийти раньше половины первого, а Коля по-прежнему – между полуднем и часом?
  в) Как изменится вероятность встречи, если Женя решит прийти в произвольное время с 12.00 до 12.50, а Коля по-прежнему между 12.00 и 13.00?

ВверхВниз   Решение


Докажите, что уравнение  3x² + 2 = y²  нельзя решить в целых числах.

ВверхВниз   Решение


Докажите, что     при  x ≥ 0.

ВверхВниз   Решение


Докажите, что  (a + b - c)/2 < mc < (a + b)/2, где a, b и c - длины сторон произвольного треугольника, mc - медиана к стороне c.

ВверхВниз   Решение


Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

ВверхВниз   Решение


Саша и Илья должны были пробежать 600 метров. Но Саша первую половину времени бежал, а вторую – шёл. А Илья первую половину дистанции бежал, а вторую – шёл. И стартовали, и финишировали мальчики одновременно. Ходят они оба со скоростью 5 км/ч. С какой скоростью бежал Илья, если Саша бежал со скоростью 10 км/ч?

ВверхВниз   Решение


Доказать, что в произведении  (1 – x + x² – x³ + ... – x99 + x100)(1 + x + x² + x³ + ... + x99 + x100)  после раскрытия скобок и приведения подобных членов не остаётся членов, содержащих x в нечётной степени.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



Задача 78134

Темы:   [ Симметрия и инволютивные преобразования ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10

Дана следующая треугольная таблица чисел:

Каждое число (кроме чисел верхней строчки) равно сумме двух ближайших чисел предыдущей строчки.
Доказать, что число, стоящее в самой нижней строчке, делится на 1958.

Прислать комментарий     Решение

Задача 103760

Темы:   [ Последовательности (прочее) ]
[ Симметрия и инволютивные преобразования ]
[ Ребусы ]
Сложность: 2+
Классы: 6

Инопланетянин со звезды Тау Кита, прилетев на Землю в понедельник, воскликнул: ''А!''. Во вторник он воскликнул: ''АУ!'', в среду — ''АУУА!'', в четверг — ''АУУАУААУ!''. Что он воскликнет в субботу?

Прислать комментарий     Решение


Задача 76521

Темы:   [ Свойства коэффициентов многочлена ]
[ Симметрия и инволютивные преобразования ]
[ Формулы сокращенного умножения (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

Доказать, что в произведении  (1 – x + x² – x³ + ... – x99 + x100)(1 + x + x² + x³ + ... + x99 + x100)  после раскрытия скобок и приведения подобных членов не остаётся членов, содержащих x в нечётной степени.

Прислать комментарий     Решение

Задача 97861

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрия и инволютивные преобразования ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Найти все решения системы уравнений:   (x + y)³ = z,  (y + z)³ = x,  (z + x)³ = y.

Прислать комментарий     Решение

Задача 30600

Темы:   [ Делимость чисел. Общие свойства ]
[ Симметрия и инволютивные преобразования ]
Сложность: 3+
Классы: 7,8,9

Назовём натуральное число n удобным, если  n² + 1  делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .