ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что ½ (x² + y²) ≥ xy при любых x и y. Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить? В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать? Окружность делит каждую из сторон треугольника
на три равные части. Докажите, что этот треугольник правильный.
Из точки, данной на окружности, проведены диаметр и хорда, равная радиусу. Найдите угол между ними. Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность. Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же. Докажите, что уравнение 3x² + 2 = y² нельзя решить в целых числах. Докажите, что Докажите, что
(a + b - c)/2 < mc < (a + b)/2, где a, b и c - длины сторон произвольного треугольника, mc - медиана к стороне c.
Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A. Саша и Илья должны были пробежать 600 метров. Но Саша первую половину времени бежал, а вторую – шёл. А Илья первую половину дистанции бежал, а вторую – шёл. И стартовали, и финишировали мальчики одновременно. Ходят они оба со скоростью 5 км/ч. С какой скоростью бежал Илья, если Саша бежал со скоростью 10 км/ч? Доказать, что в произведении (1 – x + x² – x³ + ... – x99 + x100)(1 + x + x² + x³ + ... + x99 + x100) после раскрытия скобок и приведения подобных членов не остаётся членов, содержащих x в нечётной степени. |
Страница: 1 2 3 4 5 >> [Всего задач: 22]
Дана следующая треугольная таблица чисел: Доказать, что число, стоящее в самой нижней строчке, делится на 1958.
Инопланетянин со звезды Тау Кита, прилетев на Землю в понедельник, воскликнул: ''А!''. Во вторник он воскликнул: ''АУ!'', в среду — ''АУУА!'', в четверг — ''АУУАУААУ!''. Что он воскликнет в субботу?
Доказать, что в произведении (1 – x + x² – x³ + ... – x99 + x100)(1 + x + x² + x³ + ... + x99 + x100) после раскрытия скобок и приведения подобных членов не остаётся членов, содержащих x в нечётной степени.
Найти все решения системы уравнений: (x + y)³ = z, (y + z)³ = x, (z + x)³ = y.
Назовём натуральное число n удобным, если n² + 1 делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.
Страница: 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке