ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из двухсот чисел: 1, 2, 3, ..., 199, 200 выбрали одно число, меньшее 16, и ещё 99 чисел.
Докажите, что среди выбранных чисел найдeтся два таких, одно из которых делится на другое.

   Решение

Задачи

Страница: << 145 146 147 148 149 150 151 >> [Всего задач: 1221]      



Задача 66259

Темы:   [ Вписанные и описанные окружности ]
[ Процессы и операции ]
[ Полуинварианты ]
[ ГМТ - прямая или отрезок ]
Сложность: 4+
Классы: 8,9

В точке X сидит преступник, а три полицейских, находящихся в точках A, B и C, блокируют его, то есть точка X лежит внутри треугольника ABC. Новый полицейский сменяет одного из них следующим образом: он занимает точку, равноудаленную от всех трёх полицейских, после чего один из троих уходит, и оставшаяся тройка по-прежнему блокирует преступника. Так происходит каждый вечер. Может ли случиться, что через какое-то время полицейские вновь займут точки A, B и C (известно, что точка X ни разу не попала на сторону треугольника)?

Прислать комментарий     Решение

Задача 73656

Темы:   [ Средние величины ]
[ Процессы и операции ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

Для любых n вещественных чисел a1, a2, ..., an существует такое натуральное  k ≤ n,  что каждое из k чисел ak,  ½ (ak + ak–1),
⅓ (ak + ak–1 + ak–2),  ...,  1/k (ak + ak–1 + ... + a2 + a1)  не превосходит среднего арифметического c чисел a1, a2, ..., an.

Прислать комментарий     Решение

Задача 73774

Темы:   [ Вписанные и описанные окружности ]
[ Итерации ]
[ Рациональные и иррациональные числа ]
[ Теорема Эйлера ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4+
Классы: 10,11

Автор: Чернов Н.

На плоскости даны две точки A и B. Пусть C – некоторая точка плоскости, равноудалённая от точек A и B. Построим последовательность точек
C1 = C, C2, C3, ...,  где Cn+1 – центр описанной окружности треугольника ABCn. При каком положении точки C
  а) точка Cn попадёт в середину отрезка AB (при этом Cn+1 и дальнейшие члены последовательности не определены)?
  б) точка Cn совпадает с C?

Прислать комментарий     Решение

Задача 76552

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип Дирихле (прочее) ]
Сложность: 4+
Классы: 8,9,10

Из двухсот чисел: 1, 2, 3, ..., 199, 200 выбрали одно число, меньшее 16, и ещё 99 чисел.
Докажите, что среди выбранных чисел найдeтся два таких, одно из которых делится на другое.

Прислать комментарий     Решение

Задача 78100

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 4+
Классы: 9

В прямоугольной таблице произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении.
Доказать, что сумма всех чисел в таблице равна единице, или все числа равны нулю.

Прислать комментарий     Решение

Страница: << 145 146 147 148 149 150 151 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .