ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Рассмотрим прямоугольник ABCD , в котором AB = 2 , BC = 3 . Отрезок KM параллелен AB (см.рис.), расположен на расстоянии 1 от плоскости ABCD и KM = 5 . Найдите объём многогранника ABCDKM .

Вниз   Решение


Через точку пересечения диагоналей трапеции проведена прямая, параллельная основанию и пересекающая боковые стороны в точках E и F. Отрезок EF равен 2. Найдите основания, если их отношение равно 4.

ВверхВниз   Решение


В треугольной пирамиде ABCD известно, что DC = 9 , DB = AD , а ребро AC перпендикулярно грани ABD . Сфера радиуса 2 касается грани ABC , ребра DC , а также грани DAB , в точке пересечения её медиан. Найдите объём пирамиды.

ВверхВниз   Решение


В комнате находятся 85 воздушных шаров  — красных и синих. Известно, что: 1) по крайней мере один из шаров красный; 2) из каждой произвольно выбранной пары шаров по крайней мере один синий. Сколько в комнате красных шаров?

ВверхВниз   Решение


Вписанная окружность неравнобедренного треугольника ABC касается сторон AB, BC и ABC в точках C1, A1 и B1 соответственно. Описанная окружность треугольника A1BC1 пересекает прямые B1A1 и B1C1 в точках A0 и C0 соответственно. Докажите, что ортоцентр H треугольника A0BC0, центр I вписанной окружности треугольника ABC и середина M стороны AC лежат на одной прямой.

ВверхВниз   Решение


Докажите, что если α , β и γ – углы остроугольного треугольника, то sinα + sinβ + sinγ > 2 .

ВверхВниз   Решение


n – натуральное число,  n ≥ 4.  Докажите, что  n! ≥ 2n.

ВверхВниз   Решение


В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.

ВверхВниз   Решение


На стороне AB треугольника ABC между точками A и B взята точка D, причём AD : AB = $ \alpha$ ($ \alpha$ < 1); на стороне BC между точками B и C взята точка E, причём BE : BC = $ \beta$ ($ \beta$ < 1). Через точку E проведена прямая, параллельная стороне AC и пересекающая сторону AB в точке F. Найдите отношение площадей треугольников BDE и BEF.

ВверхВниз   Решение


Около сферы описан пространственный четырёхугольник. Докажите, что четыре точки касания лежат в одной плоскости.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 78779

Темы:   [ Пространственные многоугольники ]
[ Сферы (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 11

Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.
Прислать комментарий     Решение


Задача 35073

Темы:   [ Пространственные многоугольники ]
[ Теоремы Чевы и Менелая ]
[ Касательные к сферам ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 10,11

Стороны AB, BC, CD, DA пространственного четырёхугольника ABCD касаются некоторой сферы в точках K, L, M, N соответственно.
Докажите, что точки K, L, M, N лежат в одной плоскости.

Прислать комментарий     Решение

Задача 78074

Темы:   [ Пространственные многоугольники ]
[ Проектирование помогает решить задачу ]
[ Ортогональная проекция (прочее) ]
Сложность: 3+
Классы: 11

Дана замкнутая пространственная ломаная. Некоторая плоскость пересекает все её звенья: A1A2 в точке B1, A2A3 — в точке B2, ..., AnA1 -- в точке Bn. Докажите, что

$\displaystyle {\frac{A_1B_1}{B_1A_2}}$$\displaystyle {\frac{A_2B_2}{B_2A_3}}$...$\displaystyle {\frac{A_nB_n}{B_nA_1}}$ = 1.

Прислать комментарий     Решение

Задача 109021

Темы:   [ Пространственные многоугольники ]
[ Касательные к сферам ]
[ Теоремы Чевы и Менелая в пространстве ]
[ Проектирование помогает решить задачу ]
[ Перпендикуляр и наклонная ]
Сложность: 4+
Классы: 10,11

Около сферы описан пространственный четырёхугольник. Доказать, что точки касания лежат в одной плоскости.
Прислать комментарий     Решение


Задача 77916

 [77916]
Темы:   [ Пространственные многоугольники ]
[ Касательные к сферам ]
Сложность: 4+
Классы: 10,11

Около сферы описан пространственный четырёхугольник. Докажите, что четыре точки касания лежат в одной плоскости.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .