ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи За круглым столом сидят мальчики и девочки. Докажите, что количество пар соседей разного пола чётно. Пользуясь равенством $\lg11=1{,}0413\ldots$, найдите наименьшее число $n>1$, для которого среди $n$-значных чисел нет ни одного, равного некоторой натуральной степени числа 11. Найдите ключ к "тарабарской грамоте" — тайнописи, применявшейся ранее в России для дипломатической переписки: "Пайцике тсюг т "`камащамлтой чмароке"' — кайпонили, нмирепяшвейля мапее ш Моллии цся цинсоракигелтой неменилти". На плоскости даны окружность S и точка P. Прямая,
проведенная через точку P, пересекает окружность в точках A
и B. Докажите, что произведение
PA . PB не зависит от
выбора прямой.
Две окружности имеют радиусы R1 и R2, а расстояние
между их центрами равно d. Докажите, что эти окружности
ортогональны тогда и только тогда, когда
d2 = R12 + R22.
Докажите, что если треугольники abc и a'b'c' на комплексной плоскости собственно подобны, то
(b - a)/(c - a) = (b' - a')/(c' - a').
Разность двух целых чисел умножили на их произведение. Могло ли получиться число 1999? Доказать, что если |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 63]
Существуют ли два одночлена, произведение которых равно –12а4b², а сумма является одночленом с коэффициентом 1?
Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0?
Приведите пример такого квадратного трехчлена $P(x)$, что при любом $x$ справедливо равенство $P(x)+P(x+1)+\dots + P(x+10)=x^2$.
Каждый из квадратных трёхчленов $P(x)$, $Q(x)$ и $P(x)+Q(x)$ с действительными коэффициентами имеет кратный корень. Обязательно ли все эти корни совпадают?
Для каждого многочлена степени $45$ с коэффициентами $1$, $2$, $3$, $\dots$, $46$ (в каком-то порядке) Вася выписал на доску все его различные действительные корни. Затем он увеличил все числа на доске на $1$. Каких чисел на доске оказалось больше: положительных или отрицательных?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 63]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке