ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Вписанный угол, опирающийся на диаметр
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Все точки данного отрезка AB проектируются на всевозможные прямые, проходящие через данную точку O. Найти геометрическое место этих проекций. Решение |
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 303]
Даны окружность и точка A. Найдите геометрическое место середин хорд, высекаемых данной окружностью на всевозможных прямых, проходящих через точку A.
Отрезок AB есть диаметр круга, а точка C лежит вне этого круга. Отрезки AC и BC пересекаются с окружностью в точках D и M соответственно. Найдите угол CBD, если площади треугольников DCM и ACB относятся как 1:4.
Окружность, диаметр которой равен , проходит через соседние вершины A и B прямоугольника ABCD. Длина касательной, проведённой из точки C к окружности, равна 3, AB = 1. Найдите все возможные значения, которые может принимать длина стороны BC.
В квадрате ABCD из точки D как из центра проведена внутри квадрата дуга через вершины A и C. На AD как на диаметре построена внутри квадрата полуокружность. Отрезок прямой, соединяющей произвольную точку P дуги AC с точкой D, пересекает полуокружность AD в точке K. Докажите, что длина отрезка PK равна расстоянию от точки P до стороны AB.
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 303] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|