ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что не существует тетраэдра, в котором каждое ребро являлось бы стороной плоского тупого угла. |
Страница: 1 2 >> [Всего задач: 10]
Сфера радиуса R делит каждое из рёбер SA , SC , AB и BC треугольной пирамиды SABC на три равные части и проходит через середины рёбер AC и SB . Найдите высоту пирамиды, опущенную из вершины S .
Точки P , Q , R и S расположены в пространстве так, что середины отрезков SQ и PR лежат на сфере радиуса a , а отрезки PS , PQ , QR и SR делятся сферой на три части в отношении 1:2:1 каждый. Найдите расстояние от точки P до прямой QR .
Дана четырёхугольная пирамида SABCD , основание которой – параллелограмм ABCD . Точки M , N и K лежат на ребрах AS , BS и CS соответственно, причём AM:MS = 1:2 , BN:NS = 1:3 , CK:KS = 1:1 . Постройте сечение пирамиды плоскостью MNK . В каком отношении эта плоскость делит ребро SD ?
Дана четырёугольная пирамида SABCD , основание которой – параллелограмм ABCD . Через середину ребра AB проведите плоскость, параллельную прямым AC и SD . В каком отношении эта плоскость делит ребро SB ?
Доказать, что не существует тетраэдра, в котором каждое ребро являлось бы стороной плоского тупого угла.
Страница: 1 2 >> [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке