ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.
Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение радиуса вписанной окружности к расстоянию между центрами вписанной и описанной окружностей равно равно m. Найдите углы треугольника.
Даны две бочки бесконечно большой емкости. Можно ли, пользуясь двумя ковшами
емкостью
2 - Найдите все значения x, удовлетворяющие неравенству (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4a – a² < 0 хотя бы при одном значении a из отрезка [–1, 2]. В одной американской фирме каждый служащий является либо демократом, либо республиканцем. После того как один из республиканцев решил стать демократом, тех и других в фирме стало поровну. Затем ещё три республиканца решили стать демократами, и тогда демократов стало вдвое больше чем республиканцев. Сколько служащих в этой фирме? В треугольнике $ABC$ $\angle A= 45^{\circ}$. Точка $A'$ диаметрально противоположна $A$ на описанной окружности треугольника. Точки $E$, $F$ на сторонах $AB$, $AC$ соответственно таковы. что $A'B=BE$, $A'C=CF$. Пусть $K$ – вторая точка пересечения окружностей $AEF$ и $ABC$. Докажите, что прямая $EF$ делит пополам отрезок $A'K$. Дан треугольник ABC, все углы которого меньше φ, где φ < 2π/3. Известно, что Z1 + ... + Zn = 0, где Zk — комплексные числа. Доказать, что среди этих чисел найдутся два таких, что разность их аргументов больше или равна 120o. Из произвольной точки M катета BC прямоугольного
треугольника ABC на гипотенузу AB опущен перпендикуляр MN.
Докажите, что
Докажите следующие формулы: an+1 – bn+1 = (a – b)(an + an–1b + ... + bn); a2n+1 + b2n+1 = (a + b)(a2n – a2n–1b + a2n–2b2 – ... + b2n). В трёх ящиках лежат орехи. В первом ящике на 6 кг орехов меньше, чем в двух других вместе. А во втором – на 10 кг меньше, чем в двух других вместе. Сколько орехов в третьем ящике? Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете. У края биллиарда, имеющего форму правильного 2n-угольника, стоит шар. Как надо пустить шар от борта, чтобы он, отразившись последовательно от всех бортов, вернулся в ту же точку? (При отражении углы падения и отражения равны.) Доказать, что при этом длина пути шара не зависит от выбора начальной точки. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 345]
Точка M внутри выпуклого четырехугольника ABCD такова, что площади треугольников ABM, BCM, CDM и DAM равны. Верно ли, что ABCD — параллелограмм, а точка M — точка пересечения его диагоналей?
Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.
У края биллиарда, имеющего форму правильного 2n-угольника, стоит шар. Как надо пустить шар от борта, чтобы он, отразившись последовательно от всех бортов, вернулся в ту же точку? (При отражении углы падения и отражения равны.) Доказать, что при этом длина пути шара не зависит от выбора начальной точки.
Бильярд имеет форму прямоугольного треугольника, один из острых углов которого равен 30°. Из этого угла по медиане противоположной стороны выпущен шар (материальная точка). Доказать, что после восьми отражений (угол падения равен углу отражения) он попадёт в лузу, находящуюся в вершине угла 60°.
Из точек A и B , лежащих на разных сторонах угла, восставлены перпендикуляры к сторонам, пересекающие биссектрису угла в точках C и D . Докажите, что середина отрезка CD равноудалена от точек A и B .
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 345]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке