ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Все коэффициенты многочлена равны 1, 0 или –1.
Докажите, что все его действительные корни (если они существуют) заключены в отрезке  [–2, 2].

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 177]      



Задача 78483

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10

a, b, c – такие три числа, что  abc > 0  и  a + b + c > 0.  Доказать, что  an + bn + cn > 0  при любом натуральном n.

Прислать комментарий     Решение

Задача 78561

Темы:   [ Алгебраические неравенства (прочее) ]
[ Геометрическая прогрессия ]
[ Многочлены (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 3+
Классы: 10,11

X – число, большее 2. Некто пишет на карточках числа:   1, X, X², X³, X4, ..., Xk (каждое число только на одной карточке). Потом часть карточек он кладёт себе в правый карман, часть   в левый, остальные выбрасывает. Докажите, что сумма чисел в правом кармане не может быть равна сумме чисел в левом.

Прислать комментарий     Решение

Задача 78563

Темы:   [ Алгебраические неравенства (прочее) ]
[ Многочлены (прочее) ]
[ Геометрическая прогрессия ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 3+
Классы: 10,11

Все коэффициенты многочлена равны 1, 0 или –1.
Докажите, что все его действительные корни (если они существуют) заключены в отрезке  [–2, 2].

Прислать комментарий     Решение

Задача 78667

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 3+
Классы: 11

По заданной последовательности положительных чисел  q1,..., qn, ...  строится последовательность многочленов следующим образом:
    f0(x) = 1,
    f1(x) = x,
      ...
    fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и 1.

Прислать комментарий     Решение

Задача 79430

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9

Доказать, что при любых  x >   и  y >   выполняется неравенство  x4x³y + x²y² – xy³ + y4 > x² + y².

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 177]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .