ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 172]      



Задача 30921

Темы:   [ Алгебраические неравенства (прочее) ]
[ Теорема Виета ]
Сложность: 3+
Классы: 6,7

x, y, z   положительные числа. Докажите неравенство  

Прислать комментарий     Решение

Задача 30922

Темы:   [ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
[ Разложение на множители ]
Сложность: 3+
Классы: 6,7

Докажите, что  

Прислать комментарий     Решение

Задача 35084

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что для любых различных положительных чисел a, b, c, d выполнено неравенство  a²/b + b²/c + c²/d + d²/a > a + b + c + d.

Прислать комментарий     Решение

Задача 35091

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите, что  (a/b + b/c + c/a)² ≥ 3(a/c + c/b + b/a)  для трёх действительных чисел a, b, c, не равных 0.

Прислать комментарий     Решение

Задача 60301

Темы:   [ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 172]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .