ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 172]      



Задача 30894

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 6,7

x, y ≥ 0.  Докажите, что   .

Прислать комментарий     Решение

Задача 30898

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9

n – натуральное число. Докажите, что  

Прислать комментарий     Решение

Задача 30905

Темы:   [ Алгебраические неравенства (прочее) ]
[ Показательные неравенства ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 6,7

Какое из чисел     (10 двоек) или     (9 троек) больше? А если троек не 9, а 8?

Прислать комментарий     Решение

Задача 30916

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 6,7

a, b, c, d ≥ 0,  причём  c + d ≤ a,  c + d ≤ b.  Докажите, что  ad + bc ≤ ab.

Прислать комментарий     Решение

Задача 30918

Темы:   [ Алгебраические неравенства (прочее) ]
[ Теорема Виета ]
Сложность: 3+
Классы: 6,7

a, b, c > 0  и  abc = 1.  Известно, что   a + b + c > 1/a + 1/b + 1/c.  Докажите, что ровно одно из чисел a, b, c больше 1.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 172]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .