ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 172]      



Задача 76502

Темы:   [ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 8,9

Доказать, что при любом целом положительном n сумма     больше ½.

Прислать комментарий     Решение

Задача 77950

Темы:   [ Алгебраические неравенства (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 9,10

Докажите, что  2n > (1 – x)n + (1 + x)n  при целом  n ≥ 2  и  |x| < 1.

Прислать комментарий     Решение

Задача 78152

Темы:   [ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Доказать, что если целое  n > 2,  то  (n!)² > nn.

Прислать комментарий     Решение

Задача 97871

Темы:   [ Алгебраические неравенства (прочее) ]
[ Доказательство от противного ]
[ Теорема Виета ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Даны три действительных числа: a, b и c. Известно, что  a + b + c > 0,  ab + bc + ca > 0,  abc > 0.  Докажите, что  a > 0,  b > 0  и  c > 0.

Прислать комментарий     Решение

Задача 97944

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Формулы сокращенного умножения (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Даны три неотрицательных числа a, b, c. Про них известно, что   a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
  а) Докажите, что каждое из них не больше суммы двух других.
  б) Докажите, что   a² + b² + c² ≤ 2(ab + bc + ca).
  в) Следует ли из неравенства пункта б) исходное неравенство?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 172]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .