ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор. Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ. Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник. Найдите диагональ и боковую сторону равнобедренной трапеции с основаниями 20 и 12, если известно, что центр её описанной окружности лежит на большем основании.
Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.
В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Диагонали ромба ABCD пересекаются в точке O. Докажите, что точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO и DAO являются вершинами квадрата.
Продолжите последовательность: 2, 6, 12, 20, 30, … В трапеции ABCD даны основания AD = 16 и BC = 9. На продолжении BC выбрана такая точка M, что CM = 3,2. Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза?
Дана линейка с делениями через 1 см. Проведите какую-нибудь прямую, перпендикулярную данной прямой.
Найти все такие двузначные числа , что при умножении на некоторое целое число получается число, предпоследняя цифра которого – 5.
|
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 276]
Найти все такие двузначные числа , что при умножении на некоторое целое число получается число, предпоследняя цифра которого – 5.
Доказать, что для любых трёх чисел, меньших 1000000, найдётся число, меньшее 100 (но большее 1), взаимно простое с каждым из них.
Дано 10 натуральных чисел: a1 < a2 < a3 < ... < a10. Доказать, что их наименьшее общее кратное не меньше 10a1.
Найти шесть различных натуральных чисел, произведение любых двух из которых делится на сумму этих двух чисел.
a, b, c – натуральные числа, НОД(a, b, c) = 1 и
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 276]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке