Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор.

Вниз   Решение


Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.

ВверхВниз   Решение


Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.

ВверхВниз   Решение


Найдите диагональ и боковую сторону равнобедренной трапеции с основаниями 20 и 12, если известно, что центр её описанной окружности лежит на большем основании.

ВверхВниз   Решение


Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.

ВверхВниз   Решение


В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.

ВверхВниз   Решение


Диагонали ромба ABCD пересекаются в точке O. Докажите, что точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO и DAO являются вершинами квадрата.

ВверхВниз   Решение


Продолжите последовательность: 2, 6, 12, 20, 30, …

ВверхВниз   Решение


В трапеции ABCD даны основания  AD = 16  и  BC = 9.  На продолжении BC выбрана такая точка M, что  CM = 3,2.
В каком отношении прямая AM делит площадь трапеции ABCD?

ВверхВниз   Решение


Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза?

ВверхВниз   Решение


Дана линейка с делениями через 1 см. Проведите какую-нибудь прямую, перпендикулярную данной прямой.

ВверхВниз   Решение


Найти все такие двузначные числа , что при умножении на некоторое целое число получается число, предпоследняя цифра которого – 5.

Вверх   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 276]      



Задача 78586

Темы:   [ НОД и НОК. Взаимная простота ]
[ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9

Найти все такие двузначные числа , что при умножении на некоторое целое число получается число, предпоследняя цифра которого – 5.

Прислать комментарий     Решение


Задача 78652

Темы:   [ НОД и НОК. Взаимная простота ]
[ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Доказать, что для любых трёх чисел, меньших 1000000, найдётся число, меньшее 100 (но большее 1), взаимно простое с каждым из них.

Прислать комментарий     Решение

Задача 79394

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 9

Дано 10 натуральных чисел:  a1 < a2 < a3 < ... < a10.  Доказать, что их наименьшее общее кратное не меньше 10a1.

Прислать комментарий     Решение

Задача 98009

Темы:   [ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Автор: Фомин Д.

Найти шесть различных натуральных чисел, произведение любых двух из которых делится на сумму этих двух чисел.

Прислать комментарий     Решение

Задача 98165

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9

a, b, c – натуральные числа,  НОД(a, b, c) = 1  и     Докажите, что  a – b  – точный квадрат.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 276]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .