ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Внутри выпуклого многоугольника M помещена окружность максимально возможного радиуса R (это значит, что внутри M нельзя поместить окружность большего радиуса). Известно, что внутри можно провернуть отрезок длины 1 на любой угол (т.е. мы можем двигать единичный отрезок как твердый стержень по плоскости так, чтобы он не вылезал за пределы многоугольника M и при этом повернулся на любой заданный угол). Докажите, что R1/3. Решение |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 86]
Радиус вписанной в треугольник PQR окружности равен 5, причём RP = RQ. На прямой PQ взята точка A, удалённая от прямых PR и QR на расстояния 12 и 2 соответственно. Найдите косинус угла AQR.
Точка касания вневписанной окружности со стороной треугольника и основание высоты, проведённой к этой стороне, симметричны относительно основания биссектрисы, проведённой к этой же стороне. Докажите, что эта сторона составляет треть периметра треугольника.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 86] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|