Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

К описанной окружности треугольника $ABC$ проведены касательные в точках $B$ и $C$. Лучи $CC_1$, $BB_1$, где $B_1$ и $C_1$ – середины сторон $AC$ и $AB$, пересекают эти касательные в точках $K$ и $L$ соответственно. Докажите, что $\angle BAK=\angle CAL$.

Вниз   Решение


Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую) хорошей, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число.

Напомним, что обыкновенная дробь — это отношение целого числа к натуральному.

ВверхВниз   Решение


Автор: Якубов А.

В треугольнике ABC медианы AMA, BMB и CMC пересекаются в точке M. Построим окружность ΩA, проходящую через середину отрезка AM и касающуюся отрезка BC в точке MA. Аналогично строятся окружности ΩB и ΩC. Докажите, что окружности ΩA, ΩB и ΩC имеют общую точку.

ВверхВниз   Решение


В круг радиуса 1 помещено два треугольника, площадь каждого из которых больше 1. Докажите, что эти треугольники пересекаются.

ВверхВниз   Решение


Многоугольник площади B вписан в окружность площади A и описан вокруг окружности площади C. Докажите, что  2B $ \leq$ A + C.

ВверхВниз   Решение


Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые?

ВверхВниз   Решение


Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

ВверхВниз   Решение


Сколько осей симметрии может быть у треугольника?

ВверхВниз   Решение


Докажите, что площадь трапеции равна произведению средней линии на высоту.

ВверхВниз   Решение


Доказать, что можно расставить в вершинах правильного n-угольника действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 57721

Тема:   [ Вспомогательные проекции ]
Сложность: 5+
Классы: 9

Пусть O и R — центр и радиус описанной окружности треугольника ABC, Z и r — центр и радиус его вписанной окружности; K — точка пересечения медиан треугольника с вершинами в точках касания вписанной окружности со сторонами треугольника ABC. Докажите, что точка Z лежит на отрезке OK, причем OZ : ZK = 3R : r.
Прислать комментарий     Решение


Задача 78545

Темы:   [ Неравенства с векторами ]
[ Вспомогательные проекции ]
Сложность: 3+
Классы: 10,11

Из точки O на плоскости проведено несколько векторов, сумма длин которых равна 4. Доказать, что можно выбрать несколько векторов (или, быть может, один вектор), длина суммы которых больше 1.
Прислать комментарий     Решение


Задача 78798

Темы:   [ Правильные многоугольники ]
[ Вспомогательные проекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

Доказать, что можно расставить в вершинах правильного n-угольника действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.

Прислать комментарий     Решение

Задача 97770

Темы:   [ Теория игр (прочее) ]
[ Вспомогательные проекции ]
Сложность: 4
Классы: 8,9,10

Автор: Фольклор

Игра происходит на бесконечной плоскости. Играют двое: один передвигает одну фишку-волка, другой – 50 фишек-овец. После хода волка ходит одна из овец, затем, после следующего хода волка, опять какая-нибудь из овец и т. д. И волк, и овцы передвигаются за один ход в любую сторону не более, чем на один метр. Верно ли, что при любой первоначальной позиции волк поймает хотя бы одну овцу?

Прислать комментарий     Решение

Задача 108112

Темы:   [ Правильные многоугольники ]
[ Вспомогательные проекции ]
Сложность: 4
Классы: 8,9

Из центра O правильного n-угольника A1A2...An проведены n векторов в его вершины. Даны такие числа  a1, a2, ..., an,  что
a1 > a2 > ... > an > 0.  Докажите, что линейная комбинация векторов     отлична от нулевого вектора.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .