ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности: а) набор цифр 1234; 3269; б) вторично набор 1975?

   Решение

Задачи

Страница: << 134 135 136 137 138 139 140 >> [Всего задач: 1221]      



Задача 78671

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

Два маляра красят забор, огораживающий дачные участки. Они приходят через день и красят по одному участку (участков 100 штук) в красный или зелёный цвет. Первый маляр дальтоник и путает цвета, он помнит, что и в какой цвет он сам покрасил, и видит, что покрасил второй маляр, но не знает, в какой цвет. Первый маляр добивается того, чтобы в наибольшем числе мест зелёный участок граничил с красным. Какого наибольшего числа переходов он может добиться (как бы ни действовал второй маляр)?

Замечание. Считается, что дачные участки расположены в одну линию.
Прислать комментарий     Решение


Задача 79302

Темы:   [ Рекуррентные соотношения ]
[ Обратный ход ]
Сложность: 4
Классы: 8,9

В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности: а) набор цифр 1234; 3269; б) вторично набор 1975?
Прислать комментарий     Решение


Задача 79304

Темы:   [ Рекуррентные соотношения ]
[ Обратный ход ]
[ Деление с остатком ]
Сложность: 4
Классы: 7,8,9

В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности:
  а) набор цифр 1234; 3269;   б) вторично набор 1975;   в) набор 8197?

Прислать комментарий     Решение

Задача 79310

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Правильные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Арена цирка освещается n различными прожекторами. Каждый прожектор освещает некоторую выпуклую фигуру. Известно, что если выключить один произвольный прожектор, то арена будет по-прежнему полностью освещена, а если выключить произвольные два прожектора, то арена полностью освещена не будет. При каких значениях n это возможно?

Прислать комментарий     Решение

Задача 86122

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Признаки делимости на 11 ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4
Классы: 9,10,11

К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел.

Прислать комментарий     Решение

Страница: << 134 135 136 137 138 139 140 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .