ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Геометрические неравенства
>>
Неравенство треугольника
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В выпуклом четырёхугольнике две стороны равны 1, а другие стороны и обе диагонали не больше 1. Какое максимальное значение может принимать периметр четырёхугольника? Решение |
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 289]
Даны N прямоугольных треугольников. У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что у всех исходных треугольников одно и то же отношение большего катета к меньшему, если
Даны N прямоугольных треугольников (N > 1). У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что все исходные треугольники подобны.
На сторонах BC и AC правильного треугольника ABC отмечены точки X и Y соответственно.
В треугольнике ABC на стороне BC отмечена точка K. В треугольники ABK и ACK вписаны окружности, первая касается стороны BC в точке M, вторая – в точке N. Докажите, что BM·CN > KM·KN.
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 289] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|