ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Произведение некоторых 48 натуральных чисел имеет ровно 10 различных простых делителей.
Докажите, что произведение некоторых четырёх из этих чисел является квадратом натурального числа.

   Решение

Задачи

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 1221]      



Задача 79498

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 4+
Классы: 8,9,10

Произведение некоторых 48 натуральных чисел имеет ровно 10 различных простых делителей.
Докажите, что произведение некоторых четырёх из этих чисел является квадратом натурального числа.

Прислать комментарий     Решение

Задача 79620

Темы:   [ Взвешивания ]
[ Разбиения на пары и группы; биекции ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10

Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на 5, и на 6 кучек равной массы?
Прислать комментарий     Решение


Задача 105056

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Тождественные преобразования ]
Сложность: 4+
Классы: 8,9,10

Найдите все такие целые положительные k, что число
1...12...2-2...2
является квадратом целого числа.
(В первом слагаемом (уменьшаемом) всего 2000 цифр, из которых на последних местах стоят цифры "2" в количестве k штук, а остальные цифры - "1";
второе слагаемое (вычитаемое) состоит из 1001 поряд стоящих цифр "2")
Прислать комментарий     Решение


Задача 108984

Темы:   [ Иррациональные уравнения ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Замена переменных (прочее) ]
Сложность: 4+
Классы: 9,10

Найти все действительные решения уравнения

36/+4/=28-4-.

Прислать комментарий     Решение

Задача 109614

Темы:   [ Инварианты ]
[ Процессы и операции ]
Сложность: 4+
Классы: 8,9,10,11

Имеется три кучи камней. Сизиф таскает по одному камню из кучи в кучу. За каждое перетаскивание он получает от Зевса количество монет, равное разности числа камней в куче, в которую он кладёт камень, и числа камней в куче, из которой он берёт камень (сам перетаскиваемый камень при этом не учитывается). Если указанная разность отрицательна, то Сизиф возвращает Зевсу соответствующую сумму. (Если Сизиф не может расплатиться, то великодушный Зевс позволяет ему совершать перетаскивание в долг.) В некоторый момент оказалось, что все камни лежат в тех же кучах, в которых лежали первоначально. Каков наибольший суммарный заработок Сизифа на этот момент?

Прислать комментарий     Решение

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .