ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Автор: Лифшиц Ю.

Шестнадцать футбольных команд из шестнадцати стран провели турнир – каждая команда сыграла с каждой из остальных по одному матчу.
Могло ли оказаться так, что каждая команда сыграла во всех странах, кроме своей родины?

Вниз   Решение


Некоторые из чисел 1, 2, 3, ..., $n$ покрашены в красный цвет так, что выполняется условие: если для красных чисел $a, b, c$ (не обязательно различных)  $a(b - c)$  делится на $n$, то  $b = c$.
Докажите, что красных чисел не больше чем φ($n$).

ВверхВниз   Решение


Основание правильной четырёхугольной пирамиды – квадрат со стороной 8. Высота пирамиды равна 9. Через сторону основания проведена плоскость, образующая с плоскостью основания угол, равный arctg . Найдите площадь сечения пирамиды этой плоскостью.

ВверхВниз   Решение



В правильной шестиугольной пирамиде, у которой боковые стороны - квадраты, проведите плоскость через сторону нижнего основания и противолежащую ей сторону верхнего основания. Найдите площадь построенного сечения, если сторона основания равна a.

ВверхВниз   Решение


В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?

ВверхВниз   Решение


В языке Древнего Племени алфавит состоит всего из двух букв: "М" и "О". Два слова являются синонимами, если одно из другого можно получить при помощи исключения или добавления буквосочетаний "МО" и "ООММ", повторяемых в любом порядке и любом количестве. Являются ли синонимами в языке Древнего Племени слова "ОММ" и "МОО"?

ВверхВниз   Решение


Высота равнобедренной трапеции ABCD с основаниями AD и BC равна 4 , диагонали трапеции пересекаются в точке O , AOD = 120o . Найдите среднюю линию трапеции.

ВверхВниз   Решение


Найдите внутри треугольника ABC все такие точки P, чтобы общие хорды каждой пары окружностей, построенных на отрезках PA, PB и PC как на диаметрах, были равны.

ВверхВниз   Решение


В числе  a = 0,12457...  n-я цифра после запятой равна цифре слева от запятой в числе    Докажите, что α – иррациональное число.

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты  AA1, BB1 и CC1. Докажите, что периметр треугольника A1B1C1 не превосходит половины периметра треугольника ABC.

ВверхВниз   Решение


Числа a и b таковы, что первое уравнение системы
{ cos x=ax+b
sin x+a=0

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 111923

Темы:   [ Производная и кратные корни ]
[ Производная и экстремумы ]
Сложность: 3
Классы: 10,11

Когда из бассейна сливают воду, уровень h воды в нём меняется в зависимости от времени t по закону

h(t)=at2+bt+c,

а в момент t0 окончания слива выполнены равенства h(t0)=h'(t0)=0 . За сколько часов вода из бассейна сливается полностью, если за первый час уровень воды в нём уменьшается вдвое?
Прислать комментарий     Решение

Задача 86118

Темы:   [ Системы тригонометрических уравнений и неравенств ]
[ Производная и экстремумы ]
Сложность: 3+
Классы: 11

Числа a и b таковы, что первое уравнение системы
{ sin x+a=bx
cos x=b

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Прислать комментарий     Решение


Задача 86124

Темы:   [ Системы тригонометрических уравнений и неравенств ]
[ Производная и экстремумы ]
Сложность: 3+
Классы: 11

Числа a и b таковы, что первое уравнение системы
{ cos x=ax+b
sin x+a=0

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Прислать комментарий     Решение


Задача 61403

Темы:   [ Алгебраические неравенства (прочее) ]
[ Производная и экстремумы ]
Сложность: 4-
Классы: 10,11

Докажите неравенство:  
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 65325

Темы:   [ Дискретное распределение ]
[ Производная и экстремумы ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 4-
Классы: 10,11

Илья Муромец встречает трёхголового Змея Горыныча. Каждую минуту Илья отрубает одну голову Змею. Пусть x – живучесть Змея  (x > 0).  Вероятность ps того, что на месте отрубленной головы вырастет s новых голов  (s = 0, 1, 2),  равна    В течение первых 10 минут сражения Илья записывал, сколько голов вырастало на месте каждой срубленной. Получился следующий вектор:  K = (1, 2, 2, 1, 0, 2, 1, 0, 1, 2).  Найдите такое значение живучести Змея, при котором вероятность вектора K наибольшая.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .