ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC угол C равен 75°, а угол B равен 60°. Вершина M равнобедренного прямоугольного треугольника BCM с гипотенузой BC расположена внутри треугольника ABC. Найдите угол MAC. Четыре мышонка: Белый, Серый, Толстый и Тонкий делили головку сыра. Они разрезали её на 4 внешне одинаковые дольки. В некоторых дольках оказалось больше дырок, поэтому долька Тонкого весила на 20 г меньше дольки Толстого, а долька Белого — на 8 г меньше дольки Серого. Однако Белый не расстроился, т.к. его долька весила ровно четверть от массы всего сыра. Серый отрезал от своего куска 8 г, а Толстый — 20 г. Как мышата должны поделить образовавшиеся 28 г сыра, чтобы у всех сыра стало поровну? Не забудьте пояснить свой ответ. Мальчик Стёпа говорит: позавчера мне было 10 лет, а в следующем году мне исполнится 13. Может ли такое быть? Четырехугольник ABCD вписанный. Докажите, что
точка Микеля для прямых, содержащих его стороны, лежит на
отрезке, соединяющем точки пересечения продолжений сторон.
Четыре прямые образуют четыре треугольника.
В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и угол DEF – прямой. Можно ли выписать в ряд десять чисел так, чтобы сумма любых пяти чисел подряд была бы положительна, а сумма любых семи подряд отрицательна? Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что 1/AE2 + 1/AF2 = 1/AB2.
В треугольной пирамиде SABC высота SO проходит через точку O –
центр круга, вписанного в основание ABC пирамиды. Известно, что
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 87]
В треугольной пирамиде SABC высота SO проходит через точку O –
центр круга, вписанного в основание ABC пирамиды. Известно, что
К окружности, вписанной в равнобедренный треугольник с основанием 12 и высотой 8, проведена касательная, параллельная основанию.
Докажите, что площадь треугольника равна его полупериметру, умноженному на радиус вписанной окружности.
Доказать, что если в треугольнике ABC со стороной BC = 1 радиус ra вневписанной окружности вдвое больше радиуса r вписанной окружности, то площадь треугольника численно равна 2r.
В равнобедренный треугольник ABC (AB = BC) вписана окружность. Прямая, параллельная стороне BC и касающаяся окружности, пересекает сторону AB в такой точке N такой, что AN = ⅜ AB. Найдите радиус окружности, если площадь треугольника ABC равна 12.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 87]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке