Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 104]
|
|
Сложность: 3+ Классы: 10,11
|
Плоскость проходит через середины рёбер AB и CD пирамиды ABCD и делит ребро BD в отношении 1 : 3.
В каком отношении эта плоскость делит ребро AC?
|
|
Сложность: 3+ Классы: 10,11
|
Плоскость проходит через середины рёбер
AB и
AC пирамиды
ABCD
и делит ребро
BD в отношении 1 : 3.
В каком отношении эта плоскость делит ребро
CD?
|
|
Сложность: 3+ Классы: 10,11
|
Основание пирамиды
SABCD – параллелограмм
ABCD . Плоскость
проведена через сторону
AB и середину
M бокового ребра
SC .
1) Постройте сечение пирамиды этой плоскостью.
2) В каком отношении эта плоскость делит объём пирамиды?
|
|
Сложность: 4- Классы: 10,11
|
Дан параллелепипед ABCDA1B1C1D1. На лучах C1C, C1B1 и C1D1 отложены отрезки C1M, C1N и C1K, равные соответственно 5/2 CC1, 5/2 C1B1,
5/2 C1D1. В каком отношении плоскость, проходящая через точки M, N, K, делит объём параллелепипеда ABCDA1B1C1D1.
|
|
Сложность: 4- Классы: 10,11
|
Точки M, N, K – середины рёбер соответственно AB, BC,
DD1 параллелепипеда ABCDA1B1C1D1.
а) Постройте сечение параллелепипеда плоскостью, проходящей через точки M, N, K.
б) В каком отношении эта плоскость делит ребро CC1 и диагональ DB1?
в) В каком отношении эта плоскость делит объём параллелепипеда?
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 104]