|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что для любого натурального N существует N точек, никакие три из которых не лежат на одной прямой и все попарные расстояния между которыми являются целыми числами. Даны две окружности S1, S2 и прямая l. Проведите прямую l1, параллельную прямой l, так, чтобы: а) расстояние между точками пересечения l1 с окружностями S1 и S2 имело заданную величину a; б) S1 и S2 высекали на l1 равные хорды; в) S1 и S2 высекали на l1 хорды, сумма (или разность) длин которых имела бы заданную величину a. Будем называть "размером" прямоугольного параллелепипеда сумму трёх его
измерений – длины, ширины и высоты. Прямая l касается вневписанной окружности треугольника ABC, касающейся стороны BC. Пусть Каждое из рёбер полного графа с 6 вершинами покрашено в один из двух цветов.
Пусть a , b и c – стороны параллелепипеда, d – одна из его диагоналей. Докажите, что a2 + b2 + c2 Дан угол ABC и прямая l. Постройте прямую, параллельную прямой l, на которой стороны угла ABC высекают отрезок данной длины a. На стороне AB треугольника ABC выбрана точка D . Окружность, описанная около треугольника BCD , пересекает сторону AC в точке M , а окружность, описанная около треугольника ACD , пересекает сторону BC в точке N (точки M и N отличны от точки C ). Пусть O – центр описанной окружности треугольника CMN . Докажите, что прямая OD перпендикулярна стороне AB . В пространстве рассматриваются два отрезка AB и CD , не лежащие в одной плоскости. Пусть M и K – их середины. Докажите, что MK < |
Страница: 1 2 3 4 >> [Всего задач: 16]
Докажите, что для любых четырёх точек A, B, C, D, не лежащих в одной плоскости, выполнено неравенство AB·CD + AC·BD > AD·BC.
Будем называть "размером" прямоугольного параллелепипеда сумму трёх его
измерений – длины, ширины и высоты.
Страница: 1 2 3 4 >> [Всего задач: 16] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|