Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите, что квадратные корни из комплексного числа  z = a + ib  находятся среди чисел

w = ± ± i .
Как нужно выбрать знак перед вторым слагаемым в скобке, чтобы получить два нужных корня, а не сопряженные к ним числа?

Вниз   Решение


С помощью одной двусторонней линейки восставьте перпендикуляр к данной прямой l в данной точке A.

ВверхВниз   Решение


Тетраэдр называется ортоцентрическим, если его высоты (или их продолжения) пересекаются в одной точке. Докажите, что тетраэдр ABCD ортоцентрический тогда и только тогда, когда две пары его противоположных рёбер перпендикулярны, т.е. AB CD и AD BC (в этом случае рёбра третьей пары также перпендикулярны, т.е. AC BD ).

ВверхВниз   Решение


Три параллельные прямые касаются в точках A , B и C сферы радиуса 4 с центром в точке O . Найдите угол BAC , если известно, что площадь треугольника OBC равна 4, а площадь треугольника ABC больше 16.

ВверхВниз   Решение


Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =2 , AD = 4 , BB1 = 12 . Точки M и K расположены на рёбрах CC1 и AD соответственно, причём CM:MC1 = 1:2 , AK = KD . Найдите угол между прямыми AM и KB1 .

ВверхВниз   Решение


Боковые стороны трапеции равны 7 и 11, а основания — 5 и 15. Прямая, проведённая через вершину меньшего основания параллельно большей боковой стороне, отсекает от трапеции треугольник. Найдите его стороны.

ВверхВниз   Решение


Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15.

ВверхВниз   Решение


Докажите, что если каждое из двух чисел является суммой квадратов двух целых чисел, то и их произведение является суммой квадратов двух целых чисел.

ВверхВниз   Решение


Чему равна сумма  φ(1) + φ(p) + φ(p2) + ... + φ(pα),  где α #8211; некоторое натуральное число?

ВверхВниз   Решение


Решите уравнение |x-2|+|x-1|+|x|+|x+1|+|x+2|=6.

ВверхВниз   Решение


Сфера с центром в точке O проходит через вершины K , L и M треугольной пирамиды KLMN и пересекает рёбра KN , LN и MN в точках A , B , C соответственно. Известно, что NL = 14 , KN = 16 и MN:KL = 2:3 . Проекциями точки O на плоскости KLN , LMN и KMN являются середины рёбер KL , LM и KM соответственно. Расстояние между серединами рёбер KL и MN равно . Найдите периметр треугольника ABC .

ВверхВниз   Решение


Докажите, что если одна из двух параллельных прямых перпендикулярна некоторой плоскости, то и вторая прямая перпендикулярна этой плоскости.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 116513

Темы:   [ Признаки перпендикулярности ]
[ Теорема о трех перпендикулярах ]
[ Перпендикулярность прямой и плоскости (прочее) ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3-
Классы: 10,11

Все грани треугольной пирамиды – прямоугольные треугольники. Наибольшее ребро равно a, а противоположное ребро равно b. Двугранный угол при наибольшем ребре равен α. Найдите объём пирамиды.

Прислать комментарий     Решение

Задача 87229

Темы:   [ Признаки перпендикулярности ]
[ Перпендикулярность прямых и плоскостей ]
Сложность: 3
Классы: 8,9

Докажите, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости.
Прислать комментарий     Решение


Задача 87230

Темы:   [ Признаки перпендикулярности ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 8,9

Докажите, что если одна из двух параллельных прямых перпендикулярна некоторой плоскости, то и вторая прямая перпендикулярна этой плоскости.
Прислать комментарий     Решение


Задача 87231

Темы:   [ Признаки перпендикулярности ]
[ Перпендикулярность прямых и плоскостей ]
Сложность: 3
Классы: 8,9

Докажите, что две прямые, перпендикулярные одной и той же плоскости, параллельны.
Прислать комментарий     Решение


Задача 87233

Темы:   [ Признаки перпендикулярности ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 8,9

Докажите, что две различные плоскости, перпендикулярные одной и той же прямой, параллельны.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .