Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

В треугольнике основание равно 12; один из углов при нём равен 120o; сторона против этого угла равна 28. Найдите третью сторону.

Вниз   Решение



Боковые ребра пирамиды равны между собой. Докажите, что высота пирамиды проходит через центр окружности, описанной около основания.

ВверхВниз   Решение


Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.

ВверхВниз   Решение



Высота прямоугольного треугольника ABC, опущенная на гипотенузу, равна 9.6. Из вершины C прямого угла восставлен к плоскости треугольника ABC перпендикуляр CM, причем CM = 28. Найдите расстояние от точки M до гипотенузы AB.

ВверхВниз   Решение


Докажите, что для остроугольного треугольника

$\displaystyle {\frac{1}{l_a}}$ + $\displaystyle {\frac{1}{l_b}}$ + $\displaystyle {\frac{1}{l_c}}$ $\displaystyle \leq$ $\displaystyle \sqrt{2}$$\displaystyle \left(\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right.$$\displaystyle {\frac{1}{a}}$ + $\displaystyle {\frac{1}{b}}$ + $\displaystyle {\frac{1}{c}}$$\displaystyle \left.\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right)$.


ВверхВниз   Решение


Стороны треугольника равны a, b, c. Известно, что a3=b3+c3. Докажите, что этот треугольник остроугольный.

ВверхВниз   Решение


Внутри треугольника ABC взята такая точка D, что  BD = CD,  ∠BDC = 120°.  Вне треугольника ABC взята такая точка E, что  AE = CE,  ∠AEC = 60°  и точки B и E находятся в разных полуплоскостях относительно AC. Докажите, что  ∠AFD = 90°,  где F – середина отрезка BE.

ВверхВниз   Решение


Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.

ВверхВниз   Решение


Докажите, что биссектрисы треугольника пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что прямая, лежащая в плоскости, перпендикулярна к наклонной тогда и только тогда, когда она перпендикулярна к ортогональной проекции этой на наклонной на данную плоскость.

ВверхВниз   Решение


Решите уравнение sin x + sin 2x + sin 3x = 0.

ВверхВниз   Решение


Докажите, что  4S = (a2 - (b - c)2)ctg($ \alpha$/2).

ВверхВниз   Решение


Найдите геометрическое место центров окружностей, проходящих через две данные точки.

ВверхВниз   Решение


На стороне AB треугольника ABC взята точка D, а на стороне A1B1 треугольника A1B1C1 взята точка D1. Известно, что треугольники ADC и A1D1C1 равны и отрезки DB и D1B1 равны. Докажите равенство треугольников ABC и A1B1C1.

ВверхВниз   Решение


На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?

ВверхВниз   Решение


Высота треугольной пирамиды проходит через точку пересечения высот треугольника основания. Докажите, что противоположные рёбра пирамиды попарно перпендикулярны.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 93]      



Задача 87427

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 3-
Классы: 10,11


Высота прямоугольного треугольника ABC, опущенная на гипотенузу, равна 9.6. Из вершины C прямого угла восставлен к плоскости треугольника ABC перпендикуляр CM, причем CM = 28. Найдите расстояние от точки M до гипотенузы AB.

Прислать комментарий     Решение


Задача 87236

Темы:   [ Теорема о трех перпендикулярах ]
[ Признаки перпендикулярности ]
Сложность: 3
Классы: 8,9

Докажите, что прямая, лежащая в плоскости, перпендикулярна к наклонной тогда и только тогда, когда она перпендикулярна к ортогональной проекции этой на наклонной на данную плоскость.
Прислать комментарий     Решение


Задача 87245

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортоцентрический тетраэдр ]
Сложность: 3
Классы: 8,9

Высота треугольной пирамиды проходит через точку пересечения высот треугольника основания. Докажите, что противоположные рёбра пирамиды попарно перпендикулярны.
Прислать комментарий     Решение


Задача 87342

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Основанием пирамиды SABC является правильный треугольник, сторона которого равна 2 . Основанием высоты, опущенной из вершины S , является точка O , лежащая внутри треугольника ABC . Расстояния от точки O до сторон AB , BC и CA находятся в отношении 2:1:3 . Площадь грани SAB равна . Найдите высоту пирамиды.
Прислать комментарий     Решение


Задача 87344

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Основанием пирамиды SABC является правильный треугольник, сторона которого равна 2. Основанием высоты, опущенной из вершины S , является точка O , лежащая внутри треугольника ABC . Известно, что синус угла OAB относится к синусу угла OAC как 2:3 , а синус угла OCB относится к синусу угла OCA как 4:3 . Площадь грани SAC равна . Найдите высоту пирамиды.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .