ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что прямая пересечения двух плоскостей, перпендикулярных третьей, перпендикулярна третьей плоскости.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 189]      



Задача 87244

Темы:   [ Перпендикулярные прямые в пространстве ]
[ Куб ]
Сложность: 3
Классы: 8,9

Верно ли, что в пространстве углы с соответственно перпендикулярными сторонами равны или составляют в сумме 180o ?
Прислать комментарий     Решение


Задача 87245

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортоцентрический тетраэдр ]
Сложность: 3
Классы: 8,9

Высота треугольной пирамиды проходит через точку пересечения высот треугольника основания. Докажите, что противоположные рёбра пирамиды попарно перпендикулярны.
Прислать комментарий     Решение


Задача 87268

Темы:   [ Перпендикулярные плоскости ]
[ Объем тетраэдра и пирамиды ]
[ Боковая поверхность тетраэдра и пирамиды ]
Сложность: 3
Классы: 8,9

Основание пирамиды – квадрат. Две боковые грани перпендикулярны плоскости основания, а две другие наклонены к ней под углом 45o . Среднее по величине боковое ребро равно l . Найдите объём и полную поверхность пирамиды.
Прислать комментарий     Решение


Задача 87269

Тема:   [ Перпендикулярные плоскости ]
Сложность: 3
Классы: 8,9

Докажите, что прямая пересечения двух плоскостей, перпендикулярных третьей, перпендикулярна третьей плоскости.
Прислать комментарий     Решение


Задача 87319

Темы:   [ Перпендикулярные плоскости ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

В четырёхугольной пирамиде OABCD основанием является трапеция ABCD , а боковые грани OAD и OBC перпендикулярны основанию. Площадь грани OAB равна 9, площадь грани OCD равна 20, ребро AB равно 3, ребро CD равно 5. Найдите объём пирамиды.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 189]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .