Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE; M и P — середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.

Вниз   Решение


Решите уравнения   а)  φ(x) = 2;   б)  φ(x) = 8;   в)  φ(x) = 12;   г)  φ(x) = 14.

ВверхВниз   Решение


Существует ли фигура, не имеющая ни осей симметрии, ни центров симметрии, но переходящая в себя при некотором повороте?

ВверхВниз   Решение


Пусть  z = x + iy,  w = u + iv.  Найдите
  а)  z + w;   б)  zw;   в)  z/w.

ВверхВниз   Решение


На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCP и CDQ. Докажите, что треугольник APQ правильный.

ВверхВниз   Решение


Докажите, что при центральной симметрии окружность переходит в окружность.

ВверхВниз   Решение


Разделите данный отрезок пополам с помощью линейки с параллельными краями и без делений.

ВверхВниз   Решение


Вычислите $\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.

ВверхВниз   Решение


Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =4 , AD = 2 , AA1 = 6 . Точка N – середина ребра CD , точка M расположена на ребре CC1 , причём C1M:CM = 1:2 , K – точка пересечения диагоналей грани AA1D1D . Найдите угол между прямыми KM и A1N .

ВверхВниз   Решение


Сфера с центром в точке O проходит через вершины A , B и C треугольной пирамиды ABCD и пересекает прямые AD , BD и CD в точках K , L и M соответственно. Известно, что AD = 10 , BC:BD = 3:2 и AB:CD = 4:11 . Проекциями точки O на плоскости ABD, BCD и CAD являются середины рёбер AB , BC и AC соответственно. Расстояние между серединами рёбер AB и CD равно 13. Найдите периметр треугольника KLM .

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 20]      



Задача 111114

Темы:   [ Ортоцентрический тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 3
Классы: 10,11

Докажите, что высоты тетраэдра пересекаются в одной точке (ортоцентрический тетраэдр)}тогда и только тогда, когда отрезки, соединяющие середины противолежащих рёбер, равны.
Прислать комментарий     Решение


Задача 87323

Темы:   [ Ортоцентрический тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 10,11

Сфера с центром в точке O проходит через вершины A , B и C треугольной пирамиды ABCD и пересекает прямые AD , BD и CD в точках K , L и M соответственно. Известно, что AD = 10 , BC:BD = 3:2 и AB:CD = 4:11 . Проекциями точки O на плоскости ABD, BCD и CAD являются середины рёбер AB , BC и AC соответственно. Расстояние между серединами рёбер AB и CD равно 13. Найдите периметр треугольника KLM .
Прислать комментарий     Решение


Задача 87324

Темы:   [ Ортоцентрический тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 10,11

Сфера с центром в точке O проходит через вершины K , L и M треугольной пирамиды KLMN и пересекает рёбра KN , LN и MN в точках A , B , C соответственно. Известно, что NL = 14 , KN = 16 и MN:KL = 2:3 . Проекциями точки O на плоскости KLN , LMN и KMN являются середины рёбер KL , LM и KM соответственно. Расстояние между серединами рёбер KL и MN равно . Найдите периметр треугольника ABC .
Прислать комментарий     Решение


Задача 87334

Темы:   [ Ортоцентрический тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 10,11

Тетраэдр называется ортоцентрическим, если его высоты (или их продолжения) пересекаются в одной точке. Докажите, что тетраэдр ABCD ортоцентрический тогда и только тогда, когда две пары его противоположных рёбер перпендикулярны, т.е. AB CD и AD BC (в этом случае рёбра третьей пары также перпендикулярны, т.е. AC BD ).
Прислать комментарий     Решение


Задача 87336

Темы:   [ Ортоцентрический тетраэдр ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 4
Классы: 10,11

Тетраэдр называется ортоцентрическим, если его высоты (или их продолжения) пересекаются в одной точке.Докажите, что ортоцентрическом тетраэдре общие перпендикуляры каждой пары противоположных рёбер пересекаются в одной точке.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .