Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба?

Вниз   Решение


Докажите, что  cos2($ \alpha$/2) = p(p - a)/bc и  sin2($ \alpha$/2) = (p - b)(p - c)/bc.

ВверхВниз   Решение


Дано n окружностей: O1, O2,...On, проходящих через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3,..., O3 с O1 обозначим соответственно через A1, A2,..., An. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадает с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Продолжая таким образом, мы получим точку Bn на окружности On. Если On не совпадает с An, то проводим через Bn и An прямую до второго пересечения с O1 в точке Bn + 1. Докажите, что Bn + 1 совпадает с B1.

ВверхВниз   Решение


В треугольнике ABC, площадь которого равна S, проведены биссектриса CE и медиана BD, пересекающиеся в точке O. Найдите площадь четырёхугольника ADOE, зная, что BC = a, AC = b.

ВверхВниз   Решение


В треугольнике ABC из вершины A проведена прямая, пересекающая сторону BC в точке D, находящейся между точками B и C, причём $ {\frac{CD}{BC}}$ = $ \alpha$ ( $ \alpha$ < $ {\frac{1}{2}}$). На стороне BC между точками B и D взята точка E и через неё проведена прямая, параллельная стороне AC и пересекающая сторону AB в точке F. Найдите отношение площадей трапеции ACEF и треугольника ADC, если известно, что CD = DE.

ВверхВниз   Решение


В треугольнике ABC из вершины A проведена прямая, пересекающая сторону BC в точке D, лежащей между точками B и C, причём BD : BC = $ \alpha$ ($ \alpha$ < 1). Через точку D проведена прямая, параллельная стороне AB и пересекающая сторону AC в точке E. Найдите отношение площадей треугольников ABD и ECD.

ВверхВниз   Решение


В правильной треугольной пирамиде SABC ( S – вершина, SA = 4 ) точка D лежит на ребре SC , CD = 3 , а расстояние от точки A до прямой BD равно 2. Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке A . Рассматриваются всевозможные правильные тетраэдры MNPQ такие, что точки M и N лежат на прямой BD , а прямая PQ касается сферы в одной из точек отрезка PQ . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 107]      



Задача 87148

Темы:   [ Цилиндр ]
[ Правильный тетраэдр ]
[ Проектирование помогает решить задачу ]
Сложность: 4
Классы: 8,9

Одна вершина правильного тетраэдра расположена на оси цилиндра, а другие вершины – на боковой поверхности цилиндра. Найдите ребро тетраэдра, если радиус основания цилиндра равен R .
Прислать комментарий     Решение


Задача 87349

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина, SA = 4 ) точка D лежит на ребре SC , CD = 3 , а расстояние от точки A до прямой BD равно 2. Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке A . Рассматриваются всевозможные правильные тетраэдры MNPQ такие, что точки M и N лежат на прямой BD , а прямая PQ касается сферы в одной из точек отрезка PQ . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.
Прислать комментарий     Решение


Задача 87350

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

В правильной пирамиде SMNPQ ( S – вершина) точки H и F – середины рёбер MN и NP соответственно, точка E лежит на отрезке SH , причём SH = 3 , SE = . Расстояние от точки S до прямой EF равно . Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке S . Рассматриваются всевозможные правильные тетраэдры ABCD такие, что точки C и D лежат на прямой EF , а прямая AB касается сферы в одной из точек отрезка AB . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.
Прислать комментарий     Решение


Задача 87351

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина, SA = 2 ) точка D – середина ребра SB . Расстояние от точки C до прямой AD равно . Найдите объём пирамиды. Дана сфера радиуса с центром в точке C . Рассматриваются всевозможные правильные тетраэдры MNPQ такие, что точки P и Q лежат на прямой AD , а прямая MN касается сферы в одной из точек отрезка MN . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.
Прислать комментарий     Решение


Задача 87352

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

В правильной пирамиде SMNPQ ( S – вершина) точки K и F – середины рёбер PQ и QM соответственно, точка E лежит на отрезке SK , причём SK = 4 , SE = . Расстояние от точки S до прямой EF равно . Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке S . Рассматриваются всевозможные правильные тетраэдры ABCD такие, что точки A и B лежат на прямой EF , а прямая CD касается сферы в одной из точек отрезка CD . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .