ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи


Высота треугольной пирамиды ABCD, опущенная из вершины D, проходит через точку пересечения высот треугольника ABC. Кроме того, известно, что DB = 3, DC = 2, $ \angle$BDC = 90o. Найдите отношение площади грани ADB, к площади грани ADC.

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 694]      



Задача 86973

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 4-
Классы: 10,11


Основание пирамиды - параллелограмм ABCD с площадью m2. Известно, что BD перпендикулярно AD. Двугранные углы при ребрах AD и BC равны 45o, а при ребрах AB и CD - 60o. Найдите боковую поверхность и объем пирамиды.

Прислать комментарий     Решение


Задача 87358

Тема:   [ Теорема о трех перпендикулярах ]
Сложность: 4-
Классы: 10,11


В основании четырехугольной пирамиды лежит ромб ABCD, в котором $ \angle$BAD = 60o. Известно, что SD = SB, SA = SC = AB. На ребре DC взята точка E так, что площадь треугольника BSE наименьшая среди площадей всех сечения пирамиды, содержащих отрезок BS и пересекающих отрезок DC. Найдите отношение DE : EC.

Прислать комментарий     Решение


Задача 87464

Тема:   [ Признаки перпендикулярности ]
Сложность: 4-
Классы: 10,11


Высота треугольной пирамиды ABCD, опущенная из вершины D, проходит через точку пересечения высот треугольника ABC. Кроме того, известно, что DB = 3, DC = 2, $ \angle$BDC = 90o. Найдите отношение площади грани ADB, к площади грани ADC.

Прислать комментарий     Решение


Задача 97834

Темы:   [ Параллельность прямых и плоскостей ]
[ Апофема пирамиды (тетраэдра) ]
[ Сфера, описанная около тетраэдра ]
Сложность: 4-
Классы: 10,11

Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.

Прислать комментарий     Решение

Задача 109080

Темы:   [ Параллельность прямых и плоскостей ]
[ Вспомогательные подобные треугольники ]
[ Тетраэдр (прочее) ]
Сложность: 4-
Классы: 10,11

В пирамиде ABCD точки M, F и K – середины рёбер BC, AD и CD соответственно. На прямых AM и CF взяты соответственно точки P и Q, причём
PQ || BK.  Найдите отношение  PQ : BK.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .