Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Пусть E и F — середины сторон BC и AD параллелограмма ABCD. Найдите площадь четырехугольника, образованного прямыми AE, ED, BF и FC, если известно, что площадь ABCD равна S.

Вниз   Решение


В треугольной пирамиде SABC известно, что AB = AC = 10 , BC = 16 . Высота пирамиды, опущенная из вершины S , проходит через вершину B и равна 4. Найдите полную поверхность пирамиды и радиус шара, вписанного в пирамиду.

ВверхВниз   Решение


На плоскости проведены n прямых так, что каждые две пересекаются, но никакие четыре через одну точку не проходят. Всего имеются 16 точек пересечения, причём через 6 из них проходят по три прямые. Найдите n.

ВверхВниз   Решение


а) Докажите, что если в треугольнике медиана совпадает с высотой, то этот треугольник равнобедренный.

б) Докажите, что если в треугольнике биссектриса совпадает с высотой, то этот треугольник равнобедренный.

ВверхВниз   Решение


Солдаты построены в две шеренги по n человек, так что каждый солдат из первой шеренги не выше стоящего за ним солдата из второй шеренги. В шеренгах солдат выстроили по росту. Докажите, что после этого каждый солдат из первой шеренги также будет не выше стоящего за ним солдата из второй шеренги.

ВверхВниз   Решение


Круглый пирог режут следующим образом. Вырезают сектор с углом $ \alpha$, переворачивают его на другую сторону и весь пирог поворачивают на угол $ \beta$. Дано, что $ \beta$ < $ \alpha$ < 180o. Доказать, что после некоторого конечного числа таких операций каждая точка пирога будет находиться на том же месте, что и в начале.

ВверхВниз   Решение


Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?

ВверхВниз   Решение


Пусть число α задаётся десятичной дробью
  а) 0,101001000100001000001...;
  б) 0,123456789101112131415....
Будет ли это число рациональным?

ВверхВниз   Решение


На окружности отмечено 100 точек. Эти точки нумеруются числами от 1 до 100 в некотором порядке.
  а) Докажите, что при любой нумерации точки можно разбить на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были нечётны.
  б) Верно ли, что при любой нумерации можно разбить точки на пары так, чтобы отрезки, соединяющие точки в парах, не пересекались, а все суммы в парах были чётны?

ВверхВниз   Решение


На плоскости даны три точки. Из них выбираются любые две, строится серединный перпендикуляр к отрезку, их соединяющему, и все точки отражаются относительно этой прямой, затем из всех точек (старых и новых) снова выбираются какие-то две точки и вся процедура повторяется. Так делается бесконечно много раз. Доказать, что в плоскости найдётся такая прямая, что все полученные точки будут лежать по одну сторону от нее.

ВверхВниз   Решение


  Число  N = 142857  обладает и рядом других свойств. Например:  2·142857 = 285714,  3·142857 = 428571,  ..., то есть при умножении на 1, 2, 3, ..., 6 цифры циклически переставляются;  14 + 28 + 57 = 99;  N2 = 20408122449,  20408 + 122449 = 142857 = N.
  Аналогичные операции можно проделывать и с другими периодами дробей. Что получается для чисел 1/17, 1/19? Объясните эти факты.

ВверхВниз   Решение


Докажите, что 1/22+1/32+1/42+…+1/n2<1

ВверхВниз   Решение


На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.

ВверхВниз   Решение


Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т.д. Какой палец будет по счёту 1992-м?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 229]      



Задача 88004

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Периодичность и непериодичность ]
[ Деление с остатком ]
Сложность: 2
Классы: 5,6,7

Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т.д. Какой палец будет по счёту 1992-м?

Прислать комментарий     Решение

Задача 88024

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Системы линейных уравнений ]
Сложность: 2
Классы: 5,6,7

В зоомагазине продают больших и маленьких птиц. Большая птица стоит вдвое дороже маленькой. Одна дама купила 5 больших птиц и 3 маленьких, а другая – 5 маленьких и 3 больших. При этом первая дама заплатила на 20 рублей больше. Сколько стоит каждая птица?

Прислать комментарий     Решение

Задача 88219

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Периодичность и непериодичность ]
Сложность: 2
Классы: 5,6,7,8

По кругу записано больше трех натуральных чисел, сумма которых равна 37. Известно, что суммы любых трех последовательных чисел равны между собой. Какие числа написаны по кругу?
Прислать комментарий     Решение


Задача 88221

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

Гена пошёл с папой в тир. Договорились, что Гена делает 5 выстрелов и за каждое попадание в цель получает право сделать ещё 2 выстрела. Всего Гена сделал 17 выстрелов. Сколько раз он попал в цель?
Прислать комментарий     Решение


Задача 88230

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

Двое часов начали и закончили бить одновременно. Первые бьют через каждые 2 с, вторые  — через каждые 3 с. Всего было сделано 13 ударов (совпавшие удары воспринимались за один). Сколько времени прошло между первым и последним ударами?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 229]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .