ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья на тему "Принцип Дирихле" Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что
SABCD Даны четыре окружности, каждая из которых касается внешним образом двух из трёх остальных. Докажите, что через точки касания можно провести окружность.
В треугольнике ABC сторона AB равна 5, угол CAB равен
30o,
радиус описанной окружности равен 2
На столе стоят восемь стаканов с водой. Разрешается взять любые два стакана и уравнять в них количества воды, перелив часть воды из одного стакана в другой. Докажите, что с помощью таких операций можно добиться того, чтобы во всех стаканах было поровну воды. Некто А загадал число от 1 до 15. Некто В задает вопросы на которые можно отвечать ``да" или ``нет". Может ли В отгадать число, задав a) 4 вопроса; б) 3 вопроса. Пусть $n$ – натуральное число. Назовём последовательность $a_1, a_2, ..., a_n$ интересной, если для каждого $i$ = 1, 2, ..., $n$ верно одно из равенств $a_i = i$ или $a_i = i$ + 1. Назовём интересную последовательность чётной, если сумма её членов чётна, и нечётной – иначе. Для каждой нечётной интересной последовательности нашли произведение её чисел и записали его на первый листок. Для каждой чётной – сделали то же самое и записали на второй листок. На каком листке сумма чисел больше и на сколько? (Дайте ответ в зависимости от $n$.) В классе учатся 38 человек. Докажите, что среди них найдутся четверо, родившихся в один месяц. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 591]
В классе учатся 38 человек. Докажите, что среди них найдутся четверо, родившихся в один месяц.
Запах от цветущего кустика ландышей распространяется в радиусе 20 м вокруг него. Сколько цветущих кустиков ландышей необходимо посадить вдоль прямолинейной 400-метровой аллеи, чтобы в каждой ее точке пахло ландышем?
Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов.
В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.
Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 591]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке