ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету?

   Решение

Задачи

Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 1221]      



Задача 88304

Темы:   [ Взвешивания ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8

Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету?
Прислать комментарий     Решение


Задача 107798

Темы:   [ Взвешивания ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 7,8,9

По кругу расставлены 10 железных гирек. Между каждыми соседними гирьками находится бронзовый шарик. Масса каждого шарика равна разности масс соседних с ним гирек. Докажите, что шарики можно разложить на две чаши весов так, чтобы весы уравновесились.
Прислать комментарий     Решение


Задача 109511

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8,9

Автор: Митькин Д.

Найдите все четверки действительных чисел, в каждой из которых любое число равно произведению каких-либо двух других чисел.
Прислать комментарий     Решение


Задача 109616

Темы:   [ Десятичная система счисления ]
[ Симметрия и инволютивные преобразования ]
[ Показательные неравенства ]
Сложность: 4-
Классы: 10,11

Может ли число, получаемое выписыванием в строку друг за другом целых чисел от 1 до n ( n>1 ), одинаково читаться слева направо и справа налево?
Прислать комментарий     Решение


Задача 115393

Темы:   [ Выигрышные и проигрышные позиции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10,11

Два игрока ходят по очереди. Перед началом игры у них есть поровну горошин. Ход состоит в передаче сопернику любого числа горошин. Не разрешается передавать такое количество горошин, которое до этого уже кто-то в этой партии передавал. Ноль горошин тоже передавать нельзя. Тот, кто не может сделать очередной ход по правилам, — считается проигравшим.
Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр?
Рассмотрите случаи:
а) У каждого по две горошины;
б) У каждого по три горошины;
в) У каждого по десять горошин;
г) Общий случай: у каждого по N горошин.
Прислать комментарий     Решение


Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .