ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия:
    1) картонный четырёхугольник можно наложить на бумажный так, что его вершины попадут на стороны бумажного, по одной вершине на каждую сторону;
    2) если после этого перегнуть четыре образовавшихся маленьких бумажных треугольника на картонный, то они закроют весь картонный четырёхугольник в один слой.
  а) Докажите, что, если четырёхугольники подходят друг к другу, то у бумажного либо две противоположные стороны параллельны,
либо диагонали перпендикулярны.
  б) Докажите, что если ABCD – параллелограмм, то можно сделать подходящий к нему картонный четырёхугольник.

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 563]      



Задача 67210

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.
Прислать комментарий     Решение


Задача 78082

Темы:   [ Числовые таблицы и их свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4-
Классы: 9

64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на двух диагоналях, равна 112. Числа, расположенные симметрично относительно любой диагонали, равны. Докажите, что сумма чисел в любой строке меньше 518.

Прислать комментарий     Решение

Задача 98003

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Осевая и скользящая симметрии (прочее) ]
[ Параллелограммы (прочее) ]
Сложность: 4-
Классы: 8,9

Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия:
    1) картонный четырёхугольник можно наложить на бумажный так, что его вершины попадут на стороны бумажного, по одной вершине на каждую сторону;
    2) если после этого перегнуть четыре образовавшихся маленьких бумажных треугольника на картонный, то они закроют весь картонный четырёхугольник в один слой.
  а) Докажите, что, если четырёхугольники подходят друг к другу, то у бумажного либо две противоположные стороны параллельны,
либо диагонали перпендикулярны.
  б) Докажите, что если ABCD – параллелограмм, то можно сделать подходящий к нему картонный четырёхугольник.

Прислать комментарий     Решение

Задача 98301

Темы:   [ Правильный (равносторонний) треугольник ]
[ Симметрия помогает решить задачу ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 10,11

В равностороннем треугольнике ABC на стороне AB взята точка D так, что  AD = AB/n.
Докажите,что сумма  n – 1  углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей, равна 30°:
  а) при  n = 3;
  б) при произвольном n.

Прислать комментарий     Решение

Задача 98535

Темы:   [ Задачи на движение ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Фольклор

По прямой в одном направлении на некотором расстоянии друг от друга движутся пять одинаковых шариков, а навстречу им движутся пять других таких же шариков. Скорости всех шариков одинаковы. При столкновении любых двух шариков они разлетаются в противоположные стороны с той же скоростью, с какой двигались до столкновения. Сколько всего столкновений произойдёт между шариками?

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .