|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Сторона основания правильной четырёхугольной пирамиды равна a , высота пирамиды равна 2a . Найдите расстояние между диагональю основания и скрещивающимся с ней боковым ребром.
Прямая отрезает от правильного n-угольника со стороной 1 треугольник APQ так, что AP + AQ = 1 (A – вершина n-угольника). В пирамиде ABCD точки M, F и K – середины рёбер BC, AD и CD соответственно. На прямых AM и CF взяты соответственно точки P и Q, причём Около правильного тетраэдра ABCD описана сфера. На его гранях как на основаниях построены во внешнюю сторону правильные пирамиды ABCD', ABDC', ACDB', BCDA', вершины которых лежат на этой сфере. Найдите угол между плоскостями ABC' и ACD'. |
Страница: 1 2 >> [Всего задач: 8]
Около правильного тетраэдра ABCD описана сфера. На его гранях как на основаниях построены во внешнюю сторону правильные пирамиды ABCD', ABDC', ACDB', BCDA', вершины которых лежат на этой сфере. Найдите угол между плоскостями ABC' и ACD'.
Грани икосаэдра окрасили в пять цветов (среди которых есть красный и синий) так, что две грани, окрашенные в один цвет, не имеют общих точек, даже вершин. Докажите, что для любой точки внутри икосаэдра сумма расстояний от нее до красных граней равна сумме расстояний до синих граней.
Икосаэдр и додекаэдр вписаны в одну и ту же сферу. Докажите, что тогда они описаны вокруг одной и той же сферы.
От правильного октаэдра со стороной 1 отрезали шесть углов – пирамидок с квадратным основанием и ребром ⅓. Получился многогранник, грани которого – квадраты и правильные шестиугольники. Можно ли копиями такого многогранника замостить пространство?
Страница: 1 2 >> [Всего задач: 8] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|