ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На окружности $\omega$ зафиксирована точка $A$. Хорды $BC$ окружности $\omega$ выбираются так, что проходят через фиксированную точку $P$. Докажите, что окружности 9 точек треугольников $ABC$ касаются фиксированной окружности, не зависящей от выбора $BC$. Архитектор хочет расположить семь высотных зданий так, чтобы, гуляя по городу, можно было увидеть их шпили в любом (циклическом) порядке.
Найдите углы ромба, если высота, проведённая из вершины тупого угла, делит противолежащую сторону пополам.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD. P - точка пересечения диагоналей. Из вершин выпуклого четырехугольника опущены
перпендикуляры на диагонали. Докажите, что четырехугольник,
образованный основаниями перпендикуляров, подобен исходному
четырехугольнику.
В четырехугольнике $ABCD$ $\angle B=\angle D$ и $AD=CD$. Окружность, вписанная в треугольник $ABC$, касается сторон $BC$ и $AB$ в точках $E$ и $F$ соответственно. Докажите, что середины отрезков $AC$, $BD$, $AE$ и $CF$ лежат на одной окружности. Длины сторон треугольника ABC равны a, b и c (AB = c, BC = a, CA = b и a < b < c). На лучах BC и AC отмечены соответственно такие точки B1 и A1, что BB1 = AA1 = c. На лучах CA и BA отмечены соответственно такие точки C2 и B2, что CC2 = BB2 = a. Найти A1B1 : C2B2. На экране компьютера сгенерирована некоторая конечная последовательность нулей и единиц. С ней можно производить следующую операцию: набор цифр "01" заменять на набор цифр "1000". Может ли такой процесс замен продолжаться бесконечно или когда-нибудь он обязательно прекратится?
Две стороны треугольника равны 2
Дана прямоугольная трапеция, основания которой равны a и b (a < b). Известно, что некоторая прямая, параллельная основаниям, рассекает её на две трапеции, в каждую из которых можно вписать окружность. Найдите радиусы этих окружностей.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 241]
Hа плоскости даны две окружности C1 и C2 с центрами O1 и O2 и радиусами 2R и R соответственно (O1O2 > 3R). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на C1, а две другие — на C2.
Длины сторон треугольника ABC равны a, b и c (AB = c, BC = a, CA = b и a < b < c). На лучах BC и AC отмечены соответственно такие точки B1 и A1, что BB1 = AA1 = c. На лучах CA и BA отмечены соответственно такие точки C2 и B2, что CC2 = BB2 = a. Найти A1B1 : C2B2.
На плоскости нарисованы n > 2 различных векторов
a1, a2, ..., an с равными длинами. Оказалось, что все векторы –a1 + a2 + ... + an,
В трапеции ABCD стороны AB и CD параллельны и CD = 2AB. На сторонах AD и BC выбраны точки P и Q соответственно так, что DP : PA = 2, BQ : QC = 3 : 4. Найдите отношение площадей четырёхугольников ABQP и CDPQ.
В трапеции ABCD стороны AB и CD параллельны и CD = 2AB. На сторонах AD и BC выбраны точки P и Q соответственно так, что DP : PA = 3 : 4, BQ : QC = 1 : 2. Найдите отношение площадей четырёхугольников ABQP и CDPQ.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 241]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке