Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 416]
|
|
|
Сложность: 3 Классы: 7,8,9
|
Натуральное число n таково, что числа 2n + 1 и 3n + 1 являются квадратами. Может ли при этом число 5n + 3 быть простым?
|
|
|
Сложность: 3 Классы: 7,8,9,10
|
Существуют ли нечётные целые числа х, у и z, удовлетворяющие равенству (x + y)² + (x + z)² = (y + z)²?
|
|
|
Сложность: 3 Классы: 9,10,11
|
Существуют ли такие натуральные числа a, b, c, d, что a³ + b³ + c³ + d³ = 100100 ?
|
|
|
Сложность: 3 Классы: 8,9,10
|
Известно, что выражения 4k + 5 и 9k + 4 при некоторых натуральных значениях k одновременно являются точными квадратами. Какие значения может принимать выражение 7k + 4 при тех же значениях k?
|
|
|
Сложность: 3 Классы: 8,9,10
|
Числа a и b таковы, что a³ – b³ = 2, a5 – b5 ≥ 4. Докажите, что a² + b² ≥ 2.
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 416]