ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



Задача 35143

Темы:   [ Целочисленные и целозначные многочлены ]
[ Простые числа и их свойства ]
[ Многочлен n-й степени имеет не более n корней ]
[ Теорема Безу. Разложение на множители ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10,11

Докажите, что не существует многочлена (степени больше нуля) с целыми коэффициентами, принимающего при каждом натуральном значении аргумента значение, равное некоторому простому числу.

Прислать комментарий     Решение

Задача 86113

Темы:   [ Целочисленные и целозначные многочлены ]
[ Метод координат на плоскости ]
[ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4
Классы: 9,10,11

На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

Прислать комментарий     Решение

Задача 110774

Темы:   [ Итерации ]
[ Целочисленные и целозначные многочлены ]
[ Многочлен n-й степени имеет не более n корней ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4+
Классы: 10,11

Пусть P(x) – многочлен степени  n > 1  с целыми коэффициентами, k – произвольное натуральное число. Рассмотрим многочлен
Qk(x) = P(P(...P(P(x))...))  (P применён k раз). Докажите, что существует не более n целых чисел t, при которых  Qk(t) = t.

Прислать комментарий     Решение

Задача 98330

Темы:   [ Итерации ]
[ Квадратные уравнения и системы уравнений ]
[ Многочлен n-й степени имеет не более n корней ]
[ Теорема Безу. Разложение на множители ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Докажите, что не существует никакой (даже разрывной) функции  y = f(x),  для которой  f(f(x)) = x² – 1996  при всех x.

Прислать комментарий     Решение

Задача 32884

Темы:   [ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
[ Теорема Безу. Разложение на множители ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 7

Доказать, что если несократимая рациональная дробь  p/q  является корнем многочлена P(x) с целыми коэффициентами, то  P(x) = (qx – p)Q(x),  где многочлен Q(x) также имеет целые коэффициенты.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .