ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Прямые AP, BP и CP пересекают описанную окружность треугольника ABC в точках A2, B2 и C2A1B1C1 — подерный треугольник точки P относительно треугольника ABC (см. задачу 5.99). Докажите, что  $ \triangle$A1B1C1 $ \sim$ $ \triangle$A2B2C2.

Вниз   Решение


Можно ли доску размером 5×5 заполнить доминошками размером 1×2?

ВверхВниз   Решение


Автор: Ботин Д.А.

Мосметрострой нанял двух землекопов для рытья туннеля. Один из них может за час прокопать вдвое больше, чем другой, а платят по договору каждому одинаково за каждый час работы. Что обойдётся дешевле – совместная работа землекопов с двух сторон до встречи или поочерёдное рытьё половины туннеля каждым из землекопов?

ВверхВниз   Решение


а) Пусть 0 < k < 1. На сторонах AB, BC и CA треугольника ABC отметим точки E, А и G таким образом, что

AE : EB = BF : FC = CG : GA = k.

Найдите отношение площади треугольника, образованного прямыми АF, BG и CE, к площади треугольника АВС (см. рис.).

б) Разрежьте треугольник шестью прямыми на такие части, из которых можно сложить семь равных треугольников.

ВверхВниз   Решение


Автор: Фольклор

Известно, что доля блондинов среди голубоглазых больше чем доля блондинов среди всех людей.
Что больше: доля голубоглазых среди блондинов или доля голубоглазых среди всех людей?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 177]      



Задача 61366

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство     при  |x|, |y| < 1.

Прислать комментарий     Решение

Задача 61368

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:   a²b² + b²c² + a²c² ≥ abc(a + b + c).

Прислать комментарий     Решение

Задача 61369

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство  (a + 1)(b + 1)(a + c)(b + c) ≥ 16abc  для положительных значений переменных.

Прислать комментарий     Решение

Задача 61371

Темы:   [ Алгебраические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:   x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

Прислать комментарий     Решение

Задача 61372

Темы:   [ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство  ( + )8 ≥ 64xy(x + y)²   (x, y ≥ 0).

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 177]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .