ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 9702]      



Задача 56753

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

Внутри данного треугольника ABC найдите такую точку O, что площади треугольников BOL, COM и AON равны (точки L, M и N лежат на сторонах AB, BC и CA, причем  OL || BC, OM || AC и  ON || AB; рис.).


Прислать комментарий     Решение

Задача 56754

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

На продолжениях сторон треугольника ABC взяты точки A1, B1 и C1 так, что  $ \overrightarrow{AB_1}$ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_1}$ = 2$ \overrightarrow{BC}$ и  $ \overrightarrow{CA_1}$ = 2$ \overrightarrow{AC}$. Найдите площадь треугольника A1B1C1, если известно, что площадь треугольника ABC равна S.
Прислать комментарий     Решение


Задача 56759

Тема:   [ Площадь треугольника. ]
Сложность: 3
Классы: 9

Каждая диагональ выпуклого пятиугольника ABCDE отсекает от него треугольник единичной площади. Вычислите площадь пятиугольника ABCDE.
Прислать комментарий     Решение


Задача 56765

Тема:   [ Площадь четырехугольника ]
Сложность: 3
Классы: 9

а) Диагонали выпуклого четырехугольника ABCD пересекаются в точке P. Известны площади треугольников ABP, BCP, CDP. Найдите площадь треугольника ADP.
б) Выпуклый четырехугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами. Докажите, что произведение этих чисел представляет собой точный квадрат.
Прислать комментарий     Решение


Задача 56769

Тема:   [ Площадь четырехугольника ]
Сложность: 3
Классы: 9

Точки K, L, M и N лежат на сторонах AB, BC, CD и DA параллелограмма ABCD, причем отрезки KM и LN параллельны сторонам параллелограмма. Эти отрезки пересекаются в точке O. Докажите, что площади параллелограммов KBLO и MDNO равны тогда и только тогда, когда точка O лежит на диагонали AC.
Прислать комментарий     Решение


Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .