ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 488]
В стране есть N городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого k (2 ≤ k ≤ N) при любом выборе k городов количество авиалиний между этими городами не будет превосходить 2k – 2. Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.
В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
Докажите, что сумма всех чисел вида 1/mn, где m и n – натуральные числа, 1 < m < n < 1986, не является целым числом.
Клетки шахматной доски 8×8 как-то занумерованы числами от 1 до 32, причём каждое число использовано дважды. Докажите, что можно так выбрать 32 клетки, занумерованные разными числами, что на каждой вертикали и на каждой горизонтали найдётся хотя бы по одной выбранной клетке.
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 488] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|