Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 829]
Точка M расположена на боковой стороне AB трапеции ABCD, причём AM : BM = 2 : 1. Прямая, проходящая через точку M параллельно основаниям AD и BC, пересекает боковую сторону CD в точке N. Найдите MN, если AD = 18, BC = 6.
На стороне BC ромба ABCD выбрана точка M. Прямые, проведённые через M перпендикулярно диагоналям BD и AC, пересекают прямую AD в точках P и Q соответственно. Оказалось, что прямые PB, QC и AM пересекаются в одной точке. Чему может быть равно отношение BM : MC?
Точка O – центр окружности, вписанной в треугольник ABC. На сторонах AC и BC выбрали соответственно точки M и K так, что BK·AB = BO² и AM·AB = AO². Докажите, что точки M, O и K лежат на одной прямой.
Прямая, содержащая сторону AC остроугольного треугольника ABC, симметрично отражается относительно прямых AB и BC. Две полученные прямые пересекаются в точке K. Докажите, что прямая BK проходит через центр O описанной окружности треугольника ABC.
Oпределите отношение сторон прямоугольника, описанного около уголка из пяти клеток.
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 829]