|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Точки E и F – середины рёбер CC1 и C1D1 прямоугольного параллелепипеда ABCDA1B1C1D1 . Ребро KL правильной треугольной пирамиды KLMN ( K – вершина) лежит на прямой AC , а вершины N и M – на прямых DD1 и EF соответственно. Найдите отношение объёмов призмы и пирамиды, если AB:BC=4:3 , KL:MN=2:3 . |
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 831]
Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?
Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).
Через данную точку проведите прямую, пересекающую две данные прямые под равными углами.
Докажите, что биссектрисы треугольника пересекаются в одной точке.
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника
AB1C1 пересекаются в точке N.
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 831] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|