Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 831]
На основании AD трапеции ABCD взята точка E так, что AE = BC. Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно.
Докажите, что если BO = PD, то AD² = BC² + AD·BC.
В остроугольном треугольнике ABC проведены высоты AA1, BB1 и CC1. Докажите, что если A1B1 || AB и B1C1 || BC, то A1C1 || AC.
На прямой l даны точки A, B, C и D. Через точки A и
B, а также через точки C и D проводятся параллельные прямые.
Докажите, что диагонали полученных таким образом параллелограммов (или их
продолжения) пересекают прямую l в двух фиксированных точках.
На сторонах AD и CD параллелограмма ABCD
взяты точки M и N так, что MN || AC. Докажите, что SABM = SCBN.
На диагонали AC параллелограмма ABCD взяты точки P и Q так, что AP = CQ. Точка M такова, что PM || AD и QM || AB.
Докажите, что точка M лежит на диагонали BD.
Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 831]