Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 831]
Дан выпуклый четырёхугольник ABCD. Серединные перпендикуляры к диагоналям BD и AC пересекают сторону AD в точках X
и Y соответственно, причём X лежит между A и Y.
Оказалось, что прямые BX и CY параллельны. Докажите, что прямые BD и AC перпендикулярны.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дана окружность радиуса R. Две другие окружности, сумма радиусов которых также равна R, касаются её изнутри.
Докажите, что прямая, соединяющая точки касания, проходит через одну из общих точек этих окружностей.
На сторонах AB и BC треугольника ABC выбраны точки K и M соответственно так, что KM || AC. Отрезки AM и KC пересекаются в точке O. Известно, что AK = AO и KM = MC. Докажите, что AM = KB.
Даны три равных окружности, пересекающихся в одной точке. Вторая точка пересечения каких-либо двух из этих окружностей и центр третьей определяют проходящую через них прямую. Докажите, что полученные три прямые пересекаются в одной точке.
Пусть Oa, Ob и Oc – центры описанных окружностей треугольников PBC, PCA и PAB.
Докажите, что если точки Oa и Ob лежат на прямых PA и PB, то точка Oc лежит на прямой PC.
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 831]