Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

а) Докажите, что площадь четырехугольника, образованного серединами сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон.

Вниз   Решение



В прямом параллелепипеде ABCDA1B1C1D1 с основаниями ABCD и A1B1C1D1 известно, что AB = 29, AD = 36, BD = 25, AA1 = 48. Найдите площадь сечения AB1C1D.

Вверх   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 449]      



Задача 53274

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема косинусов ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD вписан в окружность. Продолжение стороны AB за точку B пересекается с продолжением стороны DC за точку C в точке E. Найдите угол BAD, если AB = 2, BD = 2$ \sqrt{6}$, CD = 5, BE : EC = 4 : 3.

Прислать комментарий     Решение


Задача 53542

Темы:   [ Параллелограмм Вариньона ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В выпуклом четырехугольнике ABCD диагонали AC и BD равны соответственно a и b. Точки E, F, G и H являются соответственно серединами сторон AB, BC, CD и DA. Площадь четырёхугольника EFGH равна S. Найдите диагонали EG и HF четырёхугольника EFGH.

Прислать комментарий     Решение


Задача 54710

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

Окружность, вписанная в треугольник ABC, касается стороны AB в точке M, при этом AM = 1, BM = 4. Найдите CM, если известно, что $ \angle$BAC = 120o.

Прислать комментарий     Решение


Задача 55322

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC биссектриса угла BAC пересекает сторону BC в точке M. Известно, что AB = BC = 2AC, AM = 4. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 102339

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC даны длины сторон AB = 8, BC = 6 и биссектриса BD = 6. Найдите длину медианы AE.
Прислать комментарий     Решение


Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 449]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .