ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 56945

Тема:   [ Прямая Симсона ]
Сложность: 6
Классы: 9

Хорда PQ описанной окружности треугольника ABC перпендикулярна стороне BC. Докажите, что прямая Симсона точки P относительно треугольника ABC параллельна прямой AQ.
Прислать комментарий     Решение


Задача 56946

Тема:   [ Прямая Симсона ]
Сложность: 6
Классы: 9,10

Высоты треугольника ABC пересекаются в точке HP — точка его описанной окружности. Докажите, что прямая Симсона точки P относительно треугольника ABC делит отрезок PH пополам.
Прислать комментарий     Решение


Задача 56947

Тема:   [ Прямая Симсона ]
Сложность: 6
Классы: 9

Четырехугольник ABCD вписан в окружность; la — прямая Симсона точки A относительно треугольника BCD, прямые lb, lc и ld определяются аналогично. Докажите, что эти прямые пересекаются в одной точке.
Прислать комментарий     Решение


Задача 56948

Тема:   [ Прямая Симсона ]
Сложность: 6+
Классы: 9,10,11

а) Докажите, что проекции точки P описанной окружности четырехугольника ABCD на прямые Симсона треугольников  BCD, CDA, DAB и BAC лежат на одной прямой (прямая Симсона вписанного четырехугольника).
б) Докажите, что аналогично по индукции можно определить прямую Симсона вписанного n-угольника как прямую, содержащую проекции точки P на прямые Симсона всех (n - 1)-угольников, полученных выбрасыванием одной из вершин n-угольника.
Прислать комментарий     Решение


Задача 66244

Темы:   [ Вписанные и описанные окружности ]
[ Прямая Симсона ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Нилов Ф.

Дан треугольник ABC,  O – центр его описанной окружности. Проекции точек D и X на стороны треугольника лежат на прямых l и L, причём
l || XO.  Докажите, что прямая L образует равные углы с прямыми AB и CD.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .