ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 149]      



Задача 98626

Темы:   [ Разные задачи на разрезания ]
[ Четность и нечетность ]
[ Инварианты ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 10,11

Внутри квадрата отметили несколько точек и соединили их отрезками между собой и с вершинами квадрата так, чтобы отрезки не пересекались друг с другом (нигде кроме концов). В результате квадрат разделился на треугольники, так что все отмеченные точки оказались в вершинах треугольников, и ни одна не попала на стороны треугольников. Для каждой отмеченной точки и для каждой вершины квадрата подсчитали число проведённых из неё отрезков. Могло ли так случиться, что все эти числа оказались чётными?

Прислать комментарий     Решение

Задача 58255

Тема:   [ Разные задачи на разрезания ]
Сложность: 5
Классы: 8,9

Докажите, что любой выпуклый n-угольник, где n$ \ge$6, можно разрезать на выпуклые пятиугольники.
Прислать комментарий     Решение


Задача 58257

Тема:   [ Разные задачи на разрезания ]
Сложность: 5
Классы: 8,9

Докажите, что для любого натурального n, где n$ \ge$6, квадрат можно разрезать на n квадратов.
Прислать комментарий     Решение


Задача 73555

Темы:   [ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
[ Итерации ]
Сложность: 5
Классы: 7,8,9,10

Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?

Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.
Прислать комментарий     Решение


Задача 76489

Тема:   [ Разные задачи на разрезания ]
Сложность: 5
Классы: 8,9

Доказать, что из 5 попарно различных по величине квадратов нельзя сложить прямоугольник.
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .